Comparative Analysis of Some Volatility Estimators:
An Application to Historical Data from the Nigerian Stock Exchange Market

Benjamin Oyediran Oyelami 1 and Eric Erenam Sambo 2

1 Department of Mathematics of the Plateau State University, Bokkos, Nigeria
2 Nigerian Export and Import Promotion Bank, Abuja, Nigeria

Received September 17, 2016, Revised December 2, 2016, Accepted December 13, 2016, Published May 1, 2017

Abstract: Several models exist for estimating volatility of stocks. In this paper, comparisons are made for the performance characteristics of seven volatility estimators using the data for eleven Banks from the Nigerian Stock Exchange (NSE) daily prices for the period 3rd January 2006 to 31st December 2008. The estimations computed are: Standard Deviation, Historical Close-to-Close, Parkinson, Garman-Klass, Rogers-Satchell, Modified Garman-Klass and Yang Zhang volatility estimators. The volatility computations for the estimators employed the open, high, low and close values of daily prices using 5, 10 and 20 days intervals with no overlapping. The Models are automated using Microsoft Visual Basic Express Edition with the volatilities output generated by the estimators further analysed using SPSS and Microsoft Excel software packages. The criteria used to evaluate the performances of these volatility estimators are the Mean Absolute Deviation (MAD), Standard Error (STDERR) and Efficiency. The Efficiency test compares the relative uncertainty of the various estimators using standard deviation as the benchmark while the MAD and STDERR are used to find the mean absolute deviation and the standard error of the estimators respectively. In terms of MAD and STDERR, the Parkinson model performs better than other estimators while the Garman-Klass performs better than other estimators in Efficiency. The only common finding is that the Standard Deviation estimator is the least performing of the estimators. Finally, the levels of correlation between volatility estimators are found to be very high.

Keywords: Historical volatility, Stock price, Estimators , Efficiency

1. INTRODUCTION

Many research works are being carried out to make inquiry on volatility in the stock market worldwide. Volatility is the measure of risk in a market that when used properly can increase trading profits and reduce risks to investments. Volatility is traditionally associated with chaos and instability. Naturally, there are very few things that are consistent enough not to exhibit volatility [15].

Historical volatility can be thought of as the speed (rate of change) of the underlying stock price. A stock or futures contract moves at a speed that is measured as a rate too, but a rate of change per year. The higher the historical volatility, the more movement the stock has experienced and, therefore, theoretically, the more it can move in the future, although this does not provide insight into either direction or trend [17].

Daye et. al. [13] stated that volatility is the most basic statistical risk measure. It can be used to measure the market risk of a single instrument or an entire portfolio of instruments. It can be expressed in different ways; the typical definition used in finance is the standard deviation of a financial random variable [14,19-20].
Brandt and Kingsley [12] stated that Volatility estimation is of central importance to risk management, pricing and Portfolio construction. A number of attempts have been made in the last three decades to improve upon the classical standard deviation of daily returns as an estimator of asset volatility. Many of these estimators, are those developed by Parkinson [21], Garman and Klass [16], Rogers and Satchell [22-23] and make use of information on daily trading.

Volatility generally stems from the arrival of new information. For example when investors received news concerning corporate profits, interest rates, dividends or the economy, they use that information to make buying and selling decisions[20].

Historical volatility is computed using past stock prices. It can be calculated using the standard deviation of stock’s price changes from close to close of trading going back a specified number of days. Although 5, 10, 20, and 90 days are often used. Classically, historical volatility is computed as the standard deviation of daily returns within a certain period. It is unrealistic to assume that the volatility of asset returns remains constant during a long period; therefore the volatility estimated with the classical estimator is essentially the average volatility over the specified period.

The volatility of various asset returns lies in the center of option pricing, portfolio allocation, and risk management problems. Any financial economist or expert has to pay a huge amount of attention to the study on the measurement and forecasting methods of volatility, because the volatility measures the risk of an investment in a stock. It is an important piece of information in constructing an optimal portfolio. Historical volatility is also used by option traders as a proxy for future volatility in evaluating options. Its value is directly related to the benchmark value of the option. There is no doubt that volatility is a central concept in the theory and application of quantitative finance. Therefore, correct modeling of volatility is always desirable to both practitioners and researchers [19-20].

Historical volatility is the most frequently used one, can be estimated as the simple standard deviation of returns based on closing prices for a certain period. The idea of using information on the daily high and low prices, as well as the opening and closing prices, goes back a long way, to Parkinson [21] and Garman and Klass [16] at least, with further contributions by Beckers [11], Ball and Torous [10], Rogers and Satchell [13] and Yang and Zhang [29] among others. These volatility estimators are classified as range estimators because they use information on daily trading range.

Shu and Zhang [25] found that the range estimators all perform very well when an asset price follows a continuous geometric Brownian motion. However, significant differences among various range estimators are detected if the assets return distribution involves an opening jump or a large drift.

Recently, Alizadeh, et.al. [6] extended the range-based estimators to estimate stochastic volatility models. Theoretically, range estimators are more efficient than the classical close-to-close estimator. It has been proven that the Parkinson estimator is five times more efficient than the classical estimator and the Yang and Zhang estimator is 7.3 times more efficient than the classical volatility estimator. However, range estimators are built on the strict assumption that an asset price follows a geometric Brownian motion, which is certainly not the case in real markets. People often use the range estimators to study the volatility patterns of market data without taking into account the assumptions made on developing the range estimators. It is obvious that deviation from a geometric Brownian motion will affect the accuracy and efficiency of range estimators, but it is important to know the extent to which they remain useful in the analysis of real market behaviour.

Another merit of range volatility estimators could be the greater informational contents because they are calculated with opening prices, the highest prices, the lowest prices as well as closing prices. In spite of these appeals, the strict assumptions of log-normal asset returns distribution and continuous trading have been a big obstacle for attracting enough attention. For instance, Marsh and Rosenfeld [18] and Wiggins [27-28] show that the analyses using range volatility estimators succeed in enhancing efficiency but fail to reduce biasness. The main cause of this finding is the low liquidity of the assets under their studies which lead to the violation of continuous trading assumption.

Furthermore, recent development of Information Technology (IT) and advance of financial Statistics have made researchers jump over these obstacles with the availability of high frequency data. Quite useful results have been reported that the assumption of log-normal asset returns distribution is not necessary [See 1-4, 8]. For instance, Bali and Weinbaum [9] and Shu and Zhang [25] found that the range volatility estimators were not significantly biased and were also robust to microstructure errors like bid-ask spread. The relative efficiency and simplicity of range volatility estimators make a strong case for evaluating their performance further [26].
The motivation for study in this paper is to compare the performance characteristics of seven volatility estimators using the data from eleven Banks from the Nigerian Stock Exchange (NSE) using automated Microsoft Visual Basic programs (see Appendix) used for calculating volatility on daily basis for the Nigerian Stock Exchange market prices. This will guide stakeholders, investors, stockbrokers, Government etc. to have the opportunity of having enough and available information about the market for decision making. The volatility we will consider in this paper is with respect to the share price and the programs tested using the historical data for thirteen banks listed in the Nigerian stock market.

Volatility is often used as a measure of market quality in microstructure research, and there are a number of ways in which it can be measured. Hence, it is important to determine how best to measure volatility [24]. Since an in-depth knowledge of the stock market volatility is of paramount importance to the stock market players. This study has tried to make an analysis of the concept for easy understanding by the players. The paper is significant because it has used the basic historical volatility estimators to cause an understanding of the various aspects of the concept. Computer programs are used to automate the models. It is important that an investor be very knowledgeable of this concept to enable him take a buy or a sell decision. The study in this paper is expected to provide such medium.

2. STATEMENT OF THE PROBLEM

The primary aim of this paper is to compare the performance of seven volatility estimators which employs opening, closing, high and low values of daily prices on the Nigerian Stock Exchange banking sector for the period 3rd January 2006 to 31st December 2008. The period of study the Nigeria banking sector was faced with liquidity problem and banks sampled for analysis was based on availability of data at that given period. It is hoped that after the analysis, useful suggestions can be given as to which type of volatility estimator is most suited for the Nigerian Stock Exchange Banking sector.

The knowledge of the capital market by the operators is limited to a very few professionals, particularly that of volatility and volatility estimators. The teeming investors rely so much on their stockbrokers for the market analysis of their stocks. Therefore, the understanding of the volatility of the prices of stocks becomes pertinent. Hence this paper seeks to demonstrate the importance of understanding of the volatility of stocks prices using various estimators, since investment decisions cannot be made in a vacuum.

NOTATIONS

Throughout this paper we will make use of the following notations:

- σ: Volatility
- Z: Number of closing prices in a year
- n: Number of historical prices used for the volatility estimate
- O_i: The opening price
- H_i: The high price
- L_i: The low price
- C_i: The close price
- n: Number of historical days used in the volatility estimate
- r_i: Log return on the ith day

We shall also use the following notations too:

- σ: Standard Deviation
- r_c: closing prices of an asset
- \bar{r}: mean of all closing prices in the period $t=1$ to n

3. METHODOLOGY

Volatility can be estimated using various estimators ranging from ordinary standard deviation to more sophisticated estimators. In this study we shall be looking at the following well known volatility estimators to analyse the performance and efficiency of the estimators using the historical data of eleven Banks listed in the Nigerian Stock Exchange Market.

A. The standard deviation

The easiest method to evaluate volatility is simply using the classical definition of standard deviation.
The simplest method to estimate volatility and it will be used as the benchmark.

Another simple model for estimating volatility that reflects the past price movement of the underlying asset is the close-to-close volatility estimator.

B. The Close-to-Close volatility estimator

The close-to-closed volatility reflects the past price movements of the underlying asset. It is also referred to as the asset’s actual volatility and it is given as:

\[
\sigma = \sqrt{\frac{n}{n-1} \sum_{i=1}^{n} (r_i - \bar{r})^2}
\]

C. The Parkinson volatility estimator

The Parkinson model uses daily High and Low prices and has no drift term. Its efficiency intuitively comes from the fact that the price range of intraday gives more information regarding the future volatility than two arbitrary points in the series. It uses range the highest value – the lowest value variance instead of a widely used method for estimating variance of Log-transformed stock returns. The Parkinson volatility estimator is given as:

\[
\sigma = \sqrt{\frac{Z}{n-2} \sum_{i=1}^{n-1} (r_i - \bar{r})^2}
\]

D. The Garman & Klass Volatility Estimator

The Garman & Klass volatility estimator which make use of daily Opening, Closing, High and Low prices of the stock. The estimator assumes the underlying process is govern by Brownian motion with zero drift and has no opening jump.

The Garman & Klass Volatility Estimator is given as:

\[
\sigma = \sqrt{\frac{Z}{4n \ln 2} \sum_{i=1}^{n} (\ln \frac{H_i}{L_i})^2}
\]

E. Yang Zhang Volatility Estimator

The Yang Zhang volatility estimator is an extension of Garman-Klass which allows for opening jump with zero drift. The estimator uses Opening, Closing, High and Low prices. Yang Zhang volatility estimator is give as

\[
\sigma = \sqrt{\frac{Z}{n} \sum \left[\frac{1}{2} \left(\ln \frac{O_i}{C_{i-1}} \right)^2 + \frac{1}{2} \left(\ln \frac{H_i}{C_i} \right)^2 - (2 \ln 2 - 1) \left(\ln \frac{C_i}{O_i} \right)^2 \right]}
\]

F. The Rogers & Satchell Volatility Estimator

Our next estimator which is independent of the drift and Independent of opening gaps weighted average is the Rogers-Satchell. The estimator makes use of the Open-Close volatility and Close-Open volatility. When the estimator is heavily dominated by opening jumps, its performance degrades to the classical Close-to-Close estimator. The Rogers-Satchel estimator is given as
G. Yang Zhang Volatility Estimator

Yang Zhang volatility estimator has the following properties:

1. Independent of the drift;
2. Independent of opening gaps weighted average of Rogers-Satchell, Open-Close and Close-Open volatility;
3. When heavily dominated by opening jumps, the performance degrades to classical Close-to-Close volatility estimator.

The Yang Zhang volatility estimator is given as

\[\sigma^2 = \sigma_o^2 + k\sigma_c^2 + (1 - k)\sigma_{rs}^2 \]

\[\sigma_o^2 = \frac{1}{n_1} \sum \left(\ln \frac{O_{t-1}}{C_{t-1}} - \mu_o \right)^2 \]

\[\mu_o = \frac{1}{n} \sum \ln \frac{O_t}{C_{t-1}} \]

\[\sigma_c^2 = \frac{1}{n_1} \sum \left(\ln \frac{C_t}{O_t} - \mu_c \right)^2 \]

\[\mu_c = \frac{1}{n} \sum \ln \frac{C_t}{O_t} \]

\[\sigma_{rs}^2 = \frac{1}{n} \sum \left(\ln \frac{H_t}{C_t} \ln \frac{H_t}{O_t} + \ln \frac{L_t}{C_t} \ln \frac{L_t}{O_t} \right) \]

\[k = \frac{0.34}{1 + \frac{n+1}{n}} \]

H. Data

The baseline data used to evaluate the volatility estimators comprises of the NSE daily returns for eleven Banks for the period 3rd January 2006 to 31st December 2008. The data was downloaded from the www.cashcraft.com website. The Banks were: Access, Afribank, FCMB, Fidelity, Firstbank, Guaranty, IBTC, Intercontinental, UBA, Wema and Zenith Banks.

The models are automated using Microsoft Visual Basic 2008 Express edition and the volatilities output generated using the data by the estimators models are further analysed using the SPSS and the Microsoft Excel software packages. The program can accept any number of sample size n-day, \(n \geq 3 \) with no overlapping.

Here the focus of interest is on the relative performance of the aforementioned estimators on the dataset. The estimators are calculated using samples of 5, 10 and 20 days interval on the dataset and with no overlapping.

I. Empirical Test

The empirical test of the performance of the estimators on the baseline data is carried out on year by year basis and for (i) 5-day daily returns interval, (ii) 10-day daily returns interval and (iii) 20-day daily returns interval.

The measures used to access the performance of the estimators on the baseline data are as follows:

1) MAD (Mean Absolute Deviation)

\[\text{MAD} = \frac{1}{N} \sum_{i=1}^{N} |\sigma_i - \sigma| \]

Where

- \(\sigma_i \) = estimated volatility for the \(i^{th} \) Bank
- \(\sigma \) = mean value for \(\sigma_i \), \(i = 1 \) to \(N \)
- \(N \) = total no of Banks used for the analysis
2) **Standard Errors Mean**

\[\text{SEM} = \frac{\text{Std} \left(\sigma_i \right)}{\sqrt{N}} \]

Where

\[\text{Std} \left(\sigma_i \right) = \text{Standard deviation of } \sigma_i, \text{ for } i=1 \text{ to } N \]

\[N = \text{total number of Banks collated in the data} \]

3) **Efficiency**

\[\text{Efficiency} = \frac{\text{Var} \left(\sigma_S \right)}{\text{Var} \left(\sigma_K \right)} \]

where

\[\sigma_S = \text{volatility obtained by using the classical definition of standard deviation} \]

\[\sigma_K = \text{the respective volatility obtained for the estimator } K \text{ under consideration, e.g. } K = \text{Parkinson estimator.} \]

The mean volatilities for each of the estimators are compared using the classical standard deviation as a benchmark.

4. **RESULTS AND DISCUSSION**

A. **Performance Statistics on 5-day Interval Volatility Estimation**

The summary of the performance statistic for the volatility estimators used in the 5-day interval with no overlapping is as tabulated in Table 1.

Generally, the volatilities recorded by the estimators in 2008 are higher than the percentages in 2006 and 2007 respectively. This may be attributed to the bear run (downward stocks prices market trends) recorded in the 3rd and 4th quarter of 2008. On the other hand, the volatilities obtained for 2006 are higher than 2007 with the exception of Standard deviation. This may be as result of the Banks consolidation exercise that was concluded in December 2005. Immediately after the exercise, there was a bull run (upward stocks prices market trends).

The MAD values for 2006 are the highest, followed by 2007 values with the exception of CC. This may also be due to the Bull Run. Similarly, the STDERR percentages for 2006 are higher followed by 2007 and 2008.

Generally, the efficiency values for 2007 are the highest when compared to 2006 and 2008. This is followed by 2008 with the exception of the CC values. This could be attributed to stability assumed after the consolidation exercise. The 2008 efficiency is low may be because of the financial meltdown.

Table 1: 5-day Interval Performance Statistic Summary

<table>
<thead>
<tr>
<th></th>
<th>Year</th>
<th>STDEV</th>
<th>CC</th>
<th>PARK</th>
<th>GK</th>
<th>GKYZ</th>
<th>RS</th>
<th>YZ</th>
<th>Ranking in Ascending order</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2006</td>
<td>48.16%</td>
<td>40.45%</td>
<td>29.63%</td>
<td>28.02%</td>
<td>48.61%</td>
<td>34.51%</td>
<td>63.29%</td>
<td>GK, PARK, RS, CC, STDEV, GKYZ, YZ</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>60.08%</td>
<td>33.78%</td>
<td>27.49%</td>
<td>25.57%</td>
<td>42.36%</td>
<td>29.68%</td>
<td>52.27%</td>
<td>GK, PARK, RS, CC, GKYZ, YZ, STDEV</td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td>76.91%</td>
<td>72.68%</td>
<td>34.00%</td>
<td>29.62%</td>
<td>69.55%</td>
<td>38.21%</td>
<td>95.61%</td>
<td>GK, PARK, RS, GKYZ, CC, STDEV, YZ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Year</th>
<th>STDEV</th>
<th>CC</th>
<th>PARK</th>
<th>GK</th>
<th>GKYZ</th>
<th>RS</th>
<th>YZ</th>
<th>Ranking in Ascending order</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2006</td>
<td>3.99</td>
<td>2.01</td>
<td>1.12</td>
<td>1.25</td>
<td>1.70</td>
<td>1.55</td>
<td>2.35</td>
<td>PARK, GK, RS, GKYZ, CC, YZ, STDEV</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>3.74</td>
<td>0.99</td>
<td>0.91</td>
<td>0.87</td>
<td>1.21</td>
<td>1.04</td>
<td>1.42</td>
<td>GK, PARK, CC, RS, GKYZ, YZ, STDEV</td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td>2.79</td>
<td>1.26</td>
<td>0.55</td>
<td>0.64</td>
<td>0.94</td>
<td>0.77</td>
<td>1.17</td>
<td>PARK, GK, RS, GKYZ, YZ, CC, STDEV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>STDERR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
B. Performance Statistic on 10-day Interval Volatility Estimation

The summary of the performance statistic for the volatility estimators in the 10-day intervals with no overlapping is tabulated in Table 2.

Generally the volatilities estimated for 2008 are the highest, followed by that of 2006 with 2007 having the lowest. This may be attributed to the bear run (downward stocks prices market trends) recorded in the 3rd and 4th Quarter of 2008. Again, the volatilities obtained for 2006 are higher than 2007. This may be as result of the consolidation exercise in 2005 where there was a bull run (upward stocks prices market trends) after the exercise.

The MAD values for 2006 are generally higher than that of 2007 and 2008 with the exception of the standard deviation where values for 2007 are higher. The standard errors percentages for 2006 are also higher than the respective percentages in 2007 and 2008 with the exception of standard deviation. Efficiency values are higher in 2007 as compared to the respective values in 2006 and 2008. However, those of 2008 are also higher than the respective values in 2006.

Table 2: 10-day Interval Performance Statistic summary

<table>
<thead>
<tr>
<th>Year</th>
<th>STDEV</th>
<th>CC</th>
<th>PARK</th>
<th>GK</th>
<th>GKYZ</th>
<th>RS</th>
<th>YZ</th>
<th>Ranking in Ascending order</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>13.4%</td>
<td>6.40%</td>
<td>3.77%</td>
<td>4.32%</td>
<td>5.39%</td>
<td>5.42%</td>
<td>7.19%</td>
<td>PARK, GK, GKYZ, RS, CC, YZ, STDEV</td>
</tr>
<tr>
<td>2007</td>
<td>10.23%</td>
<td>3.38%</td>
<td>3.14%</td>
<td>3.00%</td>
<td>4.14%</td>
<td>3.54%</td>
<td>5.08%</td>
<td>GK, PARK, CC, RS, GKYZ, YZ, STDEV</td>
</tr>
<tr>
<td>2008</td>
<td>8.82%</td>
<td>3.64%</td>
<td>1.42%</td>
<td>1.72%</td>
<td>2.81%</td>
<td>2.16%</td>
<td>3.54%</td>
<td>PARK, GK, RS, GKYZ, YZ, CC, STDEV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>STDEV</th>
<th>CC</th>
<th>PARK</th>
<th>GK</th>
<th>GKYZ</th>
<th>RS</th>
<th>YZ</th>
<th>Ranking in Descending order</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>1.19</td>
<td>1.63</td>
<td>1.72</td>
<td>0.99</td>
<td>1.40</td>
<td>0.76</td>
<td>1.15</td>
<td>GK, PARK, RS, CC, GKYZ, YZ</td>
</tr>
<tr>
<td>2007</td>
<td>1.78</td>
<td>2.19</td>
<td>2.35</td>
<td>1.42</td>
<td>2.02</td>
<td>1.15</td>
<td>1.15</td>
<td>GK, PARK, RS, CC, GKYZ, YZ</td>
</tr>
<tr>
<td>2008</td>
<td>1.06</td>
<td>2.26</td>
<td>2.60</td>
<td>1.11</td>
<td>2.01</td>
<td>0.80</td>
<td>0.80</td>
<td>GK, PARK, RS, GKYZ, CC, YZ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>STDEV</th>
<th>CC</th>
<th>PARK</th>
<th>GK</th>
<th>GKYZ</th>
<th>RS</th>
<th>YZ</th>
<th>Ranking in Ascending order</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>46.75%</td>
<td>41.81%</td>
<td>30.37%</td>
<td>28.57%</td>
<td>51.65%</td>
<td>36.30%</td>
<td>64.60%</td>
<td>GK, PARK, RS, CC, STDEV, GKYZ, YZ</td>
</tr>
<tr>
<td>2007</td>
<td>145.37%</td>
<td>35.78%</td>
<td>29.80%</td>
<td>26.64%</td>
<td>45.69%</td>
<td>32.53%</td>
<td>52.43%</td>
<td>GK, PARK, RS, CC, GKYZ, YZ, STDEV</td>
</tr>
<tr>
<td>2008</td>
<td>122.09%</td>
<td>71.10%</td>
<td>34.39%</td>
<td>29.21%</td>
<td>70.70%</td>
<td>38.89%</td>
<td>90.48%</td>
<td>GK, PARK, RS, GKYZ, CC, YZ, STDEV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>STDEV</th>
<th>CC</th>
<th>PARK</th>
<th>GK</th>
<th>GKYZ</th>
<th>RS</th>
<th>YZ</th>
<th>Ranking in Descending order</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>4.43</td>
<td>2.22</td>
<td>1.21</td>
<td>1.41</td>
<td>2.01</td>
<td>1.76</td>
<td>2.70</td>
<td>GK, PARK, RS, GKYZ, CC, YZ, STDEV</td>
</tr>
<tr>
<td>2007</td>
<td>6.31</td>
<td>0.64</td>
<td>0.62</td>
<td>0.61</td>
<td>0.81</td>
<td>0.71</td>
<td>0.86</td>
<td>GK, PARK, CC, RS, GKYZ, YZ, STDEV</td>
</tr>
<tr>
<td>2008</td>
<td>4.93</td>
<td>1.32</td>
<td>0.55</td>
<td>0.70</td>
<td>0.97</td>
<td>0.77</td>
<td>1.20</td>
<td>PARK, GK, RS, GKYZ, CC, YZ, STDEV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>STDEV</th>
<th>CC</th>
<th>PARK</th>
<th>GK</th>
<th>GKYZ</th>
<th>RS</th>
<th>YZ</th>
<th>Ranking in Ascending order</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>15.06%</td>
<td>7.28%</td>
<td>4.22%</td>
<td>4.83%</td>
<td>6.43%</td>
<td>6.22%</td>
<td>8.60%</td>
<td>PARK, GK, RS, GKYZ, CC, YZ, STDEV</td>
</tr>
<tr>
<td>2007</td>
<td>20.10%</td>
<td>2.32%</td>
<td>2.38%</td>
<td>2.49%</td>
<td>3.08%</td>
<td>2.87%</td>
<td>3.21%</td>
<td>CC, PARK, GK, RS, GKYZ, YZ, STDEV</td>
</tr>
<tr>
<td>2008</td>
<td>15.18%</td>
<td>3.74%</td>
<td>1.43%</td>
<td>1.92%</td>
<td>2.86%</td>
<td>2.18%</td>
<td>3.55%</td>
<td>PARK, GK, RS, GKYZ, YZ, CC, STDEV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Year</th>
<th>STDEV</th>
<th>CC</th>
<th>PARK</th>
<th>GK</th>
<th>GKYZ</th>
<th>RS</th>
<th>YZ</th>
<th>Ranking in Descending order</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>1.12</td>
<td>1.54</td>
<td>1.64</td>
<td>0.91</td>
<td>1.29</td>
<td>0.72</td>
<td>0.72</td>
<td>GK, PARK, RS, CC, GKYZ, YZ</td>
</tr>
<tr>
<td>2007</td>
<td>4.06</td>
<td>4.88</td>
<td>5.46</td>
<td>3.18</td>
<td>4.47</td>
<td>2.77</td>
<td>2.77</td>
<td>GK, PARK, RS, CC, GKYZ, YZ</td>
</tr>
<tr>
<td>2008</td>
<td>1.72</td>
<td>3.55</td>
<td>4.18</td>
<td>1.73</td>
<td>3.14</td>
<td>1.35</td>
<td>1.35</td>
<td>GK, PARK, RS, GKYZ, CC, YZ</td>
</tr>
</tbody>
</table>
C. Performance Statistics on 20-day Interval Volatility Estimation

The summary of the performance statistics for the volatility estimators in the 10-day intervals with no overlapping is tabulated in Table 3. It follows also, that volatilities obtained in 2008 are generally higher than the respective percentages in year 2006 and 2007 with the exception of standard deviation values which are highest in 2007. Note also that the values for 2006 are higher than those obtained in 2007.

The MAD values obtained for 2006 are higher than the values obtained in 2007 and 2008. Those for 2008 are higher than the respective values in 2007. The only exception is the standard deviation.

The standard errors are also peaked in 2006 as compared to 2007 and 2008. There are some variants with respect to the values obtained in 2007 and 2008. The efficiency coefficients in 2007 are generally higher than the values obtained in 2006 and 2008. However, some variations are noticeable in 2006 and 2008.

Table 3. 20-day Interval Performance Statistic Summary

<table>
<thead>
<tr>
<th>Volatility</th>
<th>Year</th>
<th>STDEV</th>
<th>CC</th>
<th>PARK</th>
<th>GK</th>
<th>GKYZ</th>
<th>RS</th>
<th>YZ</th>
<th>Ranking in Ascending order</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2006</td>
<td>112.57%</td>
<td>43.26%</td>
<td>30.29%</td>
<td>27.65%</td>
<td>53.19%</td>
<td>36.89%</td>
<td>64.88%</td>
<td>GK, PARK, RS, CC, GKYZ, YZ, STDEV</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>212.99%</td>
<td>35.73%</td>
<td>29.39%</td>
<td>24.93%</td>
<td>45.66%</td>
<td>32.47%</td>
<td>49.86%</td>
<td>GK, PARK, RS, CC, GKYZ, YZ, STDEV</td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td>154.58%</td>
<td>69.10%</td>
<td>33.94%</td>
<td>27.57%</td>
<td>72.77%</td>
<td>38.69%</td>
<td>88.26%</td>
<td>GK, PARK, RS, CC, GKYZ, YZ, STDEV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAD</th>
<th>Year</th>
<th>STDEV</th>
<th>CC</th>
<th>PARK</th>
<th>GK</th>
<th>GKYZ</th>
<th>RS</th>
<th>YZ</th>
<th>Ranking in Ascending order</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2006</td>
<td>9.47</td>
<td>3.00</td>
<td>1.56</td>
<td>1.75</td>
<td>2.85</td>
<td>2.31</td>
<td>3.87</td>
<td>PARK, GK, RS, GKYZ, CC, YZ, STDEV</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>13.74</td>
<td>1.31</td>
<td>1.20</td>
<td>1.12</td>
<td>1.73</td>
<td>1.35</td>
<td>1.82</td>
<td>GK, PARK, CC, RS, GKYZ, YZ, STDEV</td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td>7.57</td>
<td>1.86</td>
<td>0.87</td>
<td>1.00</td>
<td>1.90</td>
<td>1.14</td>
<td>2.37</td>
<td>PARK, GK, RS, CC, GKYZ, YZ, STDEV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STDERR</th>
<th>Year</th>
<th>STDEV</th>
<th>CC</th>
<th>PARK</th>
<th>GK</th>
<th>GKYZ</th>
<th>RS</th>
<th>YZ</th>
<th>Ranking in Ascending order</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2006</td>
<td>28.06%</td>
<td>8.46%</td>
<td>4.61%</td>
<td>5.05%</td>
<td>7.34%</td>
<td>7.01%</td>
<td>9.90%</td>
<td>PARK, GK, RS, GKYZ, CC, YZ, STDEV</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>31.34%</td>
<td>2.08%</td>
<td>2.39%</td>
<td>2.65%</td>
<td>3.06%</td>
<td>3.00%</td>
<td>3.13%</td>
<td>CC, PARK, GK, RS, GKYZ, YZ, STDEV</td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td>18.08%</td>
<td>3.38%</td>
<td>1.37%</td>
<td>1.96%</td>
<td>3.34%</td>
<td>2.15%</td>
<td>4.22%</td>
<td>PARK, GK, RS, GKYZ, CC, YZ, STDEV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Efficiency</th>
<th>Year</th>
<th>STDEV</th>
<th>CC</th>
<th>PARK</th>
<th>GK</th>
<th>GKYZ</th>
<th>RS</th>
<th>YZ</th>
<th>Ranking in Descending order</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2006</td>
<td>2.60</td>
<td>3.72</td>
<td>4.07</td>
<td>2.12</td>
<td>3.05</td>
<td>1.74</td>
<td>GK, PARK, RS, CC, GKYZ, YZ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>5.96</td>
<td>7.25</td>
<td>8.54</td>
<td>4.66</td>
<td>6.56</td>
<td>4.27</td>
<td>GK, PARK, RS, CC, GKYZ, YZ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td>2.24</td>
<td>4.55</td>
<td>5.61</td>
<td>2.12</td>
<td>4.00</td>
<td>1.75</td>
<td>GK, PARK, RS, CC, GKYZ, YZ</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. Volatility Estimators Vs Banks: 2006 5-Day Interval

Figure 2. Volatility Estimators Vs Banks: 2007 5-Day Interval

Figure 3. Volatility Estimators Vs. Banks: 2008 5-Day Interval

Figure 4. Volatility Estimators Vs. Banks: 2006 10-Day Interval

Figure 5. Volatility Estimators Vs. Banks: 2007 10-Day Interval

Figure 6. Volatility Estimators Vs. Banks: 2006 20-Day Interval
Figure 7. Volatility Estimators Vs. Banks: 2007 20-Day Interval

Figure 8. Volatility Estimators Vs Banks: 2008 20-Day Interval

Figure 9. The deployment of Microsoft Visual Basic Platform for computation for the volatility estimator
D. Correlation

The idea of using measuring the correlation between estimators is to determine the inter-relationships between the various estimators. High correlations between the estimators when applied to market data, which suggests that there are fundamental behaviors of the market process which are not captured by the simulated process.

1) 5-day interval correlation

Tables 4 to 6 show the correlation coefficients of the estimators for 5-day interval. The correlation of the estimators are computed for 10-day interval and the 20-day interval (see Table 7 to 9 and Table 10 to 12) respectively. There is high significance correlation between Garman-Klass/Parkinson (GKP), Rogers-Satchell/Parkinson, Rogers-Satchell/Garman-Klass and GKYZ/Yang-Zhang in 2006. In general, the correlation coefficient between CC and other estimators is almost zero with the exception of GYYZ and YZ.

In 2007, there is high significance correlation between all the estimators. Also in 2008, the estimators are highly correlated but of lower values as compared to 2007.

Table 4. Correlation 2006 5-Day Interval

<table>
<thead>
<tr>
<th></th>
<th>CC</th>
<th>PARK</th>
<th>GK</th>
<th>GKYZ</th>
<th>RS</th>
<th>YZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>1</td>
<td>-0.03</td>
<td>0.69</td>
<td>-0.03</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>PARK</td>
<td>1</td>
<td>0.99</td>
<td>0.76</td>
<td>0.97</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>GK</td>
<td>1</td>
<td>0.69</td>
<td>0.99</td>
<td>0.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GKYZ</td>
<td>1</td>
<td>0.69</td>
<td>0.99</td>
<td>0.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>1</td>
<td>0.56</td>
<td>0.96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YZ</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 5. Correlation 2007 5-Day Interval

<table>
<thead>
<tr>
<th></th>
<th>CC</th>
<th>PARK</th>
<th>GK</th>
<th>GKYZ</th>
<th>RS</th>
<th>YZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>1</td>
<td>0.94</td>
<td>0.91</td>
<td>0.96</td>
<td>0.89</td>
<td>0.98</td>
</tr>
<tr>
<td>PARK</td>
<td>1</td>
<td>0.99</td>
<td>1.00</td>
<td>0.99</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>GK</td>
<td>1</td>
<td>0.98</td>
<td>1.00</td>
<td>0.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GKYZ</td>
<td>1</td>
<td>0.97</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>1</td>
<td>0.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YZ</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6. Correlation 2008 5-Day Interval

<table>
<thead>
<tr>
<th></th>
<th>CC</th>
<th>PARK</th>
<th>GK</th>
<th>GKYZ</th>
<th>RS</th>
<th>YZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>1</td>
<td>0.61</td>
<td>0.65</td>
<td>0.91</td>
<td>0.61</td>
<td>0.96</td>
</tr>
<tr>
<td>PARK</td>
<td>1</td>
<td>0.93</td>
<td>0.87</td>
<td>0.91</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>GK</td>
<td>1</td>
<td>0.86</td>
<td>0.95</td>
<td>0.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GKYZ</td>
<td>1</td>
<td>0.82</td>
<td>0.96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>1</td>
<td>0.70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YZ</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2) 10-day interval correlation

Table 7 to 9 show the correlation coefficients of the estimators in 10-day interval. The coefficients follow similar patterns as recorded in the 5-day interval.
Table 7. Correlation 2006 10-Day Interval

<table>
<thead>
<tr>
<th></th>
<th>CC</th>
<th>PARK</th>
<th>GK</th>
<th>GKYZ</th>
<th>RS</th>
<th>YZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td></td>
<td>1 0.03</td>
<td>-0.10</td>
<td>0.74</td>
<td>-0.05</td>
<td>0.80</td>
</tr>
<tr>
<td>PARK</td>
<td>1 0.98</td>
<td></td>
<td>0.69</td>
<td>0.98</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>GK</td>
<td>1 0.59</td>
<td></td>
<td>0.99</td>
<td>0.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GKYZ</td>
<td>1</td>
<td></td>
<td>0.63</td>
<td>0.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>1</td>
<td></td>
<td>0.55</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>YZ</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 8. Correlation 2007 10-Day Interval

<table>
<thead>
<tr>
<th></th>
<th>CC</th>
<th>PARK</th>
<th>GK</th>
<th>GKYZ</th>
<th>RS</th>
<th>YZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td></td>
<td>0.86</td>
<td>0.76</td>
<td>0.92</td>
<td>0.76</td>
<td>0.93</td>
</tr>
<tr>
<td>PARK</td>
<td>1 0.98</td>
<td></td>
<td>0.98</td>
<td>0.97</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>GK</td>
<td>1 0.94</td>
<td></td>
<td>0.99</td>
<td>0.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GKYZ</td>
<td>1 0.94</td>
<td></td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>1 0.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YZ</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 9. Correlation 2008 10-Day Interval

<table>
<thead>
<tr>
<th></th>
<th>CC</th>
<th>PARK</th>
<th>GK</th>
<th>GKYZ</th>
<th>RS</th>
<th>YZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td></td>
<td>0.67</td>
<td>0.64</td>
<td>0.93</td>
<td>0.63</td>
<td>0.92</td>
</tr>
<tr>
<td>PARK</td>
<td>1 0.91</td>
<td></td>
<td>0.87</td>
<td>0.90</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>GK</td>
<td>1 0.82</td>
<td></td>
<td>0.95</td>
<td>0.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GKYZ</td>
<td>1 0.80</td>
<td></td>
<td>0.98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td></td>
<td>1 0.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YZ</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3) 20-day interval correlation

Tables 10 to 12 show the correlation coefficients of the estimators in 20-day interval.

The coefficients follow similar patterns as recorded in the 5-day interval and 10-day interval.

Table 10. Correlation 2006 20-Day Interval

<table>
<thead>
<tr>
<th></th>
<th>CC</th>
<th>PARK</th>
<th>GK</th>
<th>GKYZ</th>
<th>RS</th>
<th>YZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td></td>
<td>1 0.02</td>
<td>-0.16</td>
<td>0.79</td>
<td>-0.04</td>
<td>0.83</td>
</tr>
<tr>
<td>PARK</td>
<td>1 0.98</td>
<td></td>
<td>0.62</td>
<td>0.98</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>GK</td>
<td>1 0.46</td>
<td></td>
<td>0.98</td>
<td>0.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GKYZ</td>
<td>1 0.57</td>
<td></td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>1 0.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YZ</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 11. Correlation 2007 20-Day Interval

<table>
<thead>
<tr>
<th></th>
<th>CC</th>
<th>PARK</th>
<th>GK</th>
<th>GKYZ</th>
<th>RS</th>
<th>YZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td></td>
<td>0.78</td>
<td>0.63</td>
<td>0.88</td>
<td>0.66</td>
<td>0.84</td>
</tr>
<tr>
<td>PARK</td>
<td>1 0.97</td>
<td></td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>GK</td>
<td>1 0.91</td>
<td></td>
<td>0.99</td>
<td>0.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GKYZ</td>
<td>1 0.93</td>
<td></td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td>1 0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YZ</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 12 Correlation 2008 20-Day Interval

<table>
<thead>
<tr>
<th></th>
<th>CC</th>
<th>PARK</th>
<th>GK</th>
<th>GKY</th>
<th>RS</th>
<th>YZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC</td>
<td>1</td>
<td>0.65</td>
<td>0.55</td>
<td>0.96</td>
<td>0.56</td>
<td>0.96</td>
</tr>
<tr>
<td>PARK</td>
<td>1</td>
<td>0.91</td>
<td>0.81</td>
<td>0.89</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td>GK</td>
<td></td>
<td>1</td>
<td>0.75</td>
<td>0.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GKY</td>
<td></td>
<td></td>
<td>1</td>
<td>0.74</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>RS</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td>YZ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Generally, in terms of MAD and STDERR, the Parkinson is found to outperform other estimators with respect to the minimum average values recorded for the dataset. For Efficiency, the Garman-Klass outperforms other estimators in which the maximum average Efficiency coefficients are recorded for the dataset. The only common finding is that the Standard Deviation is the least performed estimator used.

Furthermore, the levels of correlation between volatility estimators are very high with the exception of some few cases with respect to the Close-to-Close estimator. It was also noted that the particular period analysed – 3/01/2006 to 31/12/2008 – were marked by strong market swings due to the banking sector consolidation exercise in Nigeria which was concluded in December 2005 and the world-wide economic meltdown which commenced in 2008. Due to the fragility of the market at the period, the volatility estimates evaluated tend to exhibit high values especially in 2006 and 2008. This is attributed to the bull run (upward stocks prices market trends) in 2006 especially in banking stocks where banks stocks prices keep increasing and the bear run (downward stocks prices market trends) which started in 2008 due to the world-wide economic meltdown.

5. Conclusion

In this study we compared the performance characteristics of a number of volatility estimators in an empirical test on historical data from eleven Banks listed Nigerian Stock Exchange. The price movement for Banks were analysed from January 3, 2006 to December 31, 2008. The estimators used were: Standard Deviation, Close-to-Close, Parkinson, and Garman-Klass, Garman-Klass modified by Yang-Zhang, Rogers-Satchell and Yang-Zang volatility estimators. The estimators used to evaluate the performances of the volatility estimators are the Mean Absolute Deviation (MAD), Standard Error (STDERR) and Efficiency using Standard Deviation as the benchmark.

Conclusively, previous findings suggest that the standard deviation is not necessarily the best measure of stock price volatility with daily stock price changes because of the statistical properties of stock market returns and this study has equally confirmed that. From our study, it is found that the standard errors generated from the estimators are generally high. Even the more recently developed models like the Yang-Zhang and Rogers-Satchells which have been tested and proven to be more efficient on other indices world-wide were not in conformity with the data used. This in our own opinion may require further modeling and or development of newer models that will generate minimum STDERR and MAD values and higher efficiency particularly for Nigerian Stock Exchange Index.

Authors’ Contributions

The first author proposed the topic and the volatility estimators used and behavioral analysis using the historical volatility data and the literature review. The second author implemented the Visual basic programs used together with experimental data used. The two authors jointly did the analysis of the data and interpretation of results obtained and made inputs into the writing of this paper.

The authors declare that no conflict of interests.

ACKNOWLEDGMENT

The authors hereby acknowledge the suggestions of the reviewers which improves the quality of the paper.
REFERENCES

DOI: 10.1002/fut.20197

APPENDIX

PROGRAMMES: Microsoft Visual Basic Programs
Public Class Form1

GLOBAL DECLARATIONS

Dim priceMovementValueS_ As String 'buffer to store the price movement values retrieved from the csv text input
Dim highPriceMovementValueS_ As String 'buffer to contain the high values from the provided CSV input
Dim lowPriceMovementValueS_ As String 'buffer to hold the low values from the provided CSV input
Dim startIndexOfX_ As Integer = 3 'the column to start operating from the csv tables

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles ParkinsonButton.Click

'NOTE: For efficiency, the program is divided into three phases. Most of the summations are performed in the first phase while the final calculations are carried out in the second phase and the output is done in the last phase.

DECLARATIONS

Dim currentOpenClosePriceMovementRowO_ As String, currentHighPriceMovementRowO_ As String, currentLowPriceMovementRowO_ As String, rowCount_ As Integer = 0, columnIndex_ As Integer = 1, samplingDayS_ As Integer = CType(NumberOfDaysTextbox.Text, Integer)
Dim closePlusOnE_ As Double, HighPriceE_ As Double = -1, LowPriceE_ As Double = -1, ClosingPriceE_ As Double, OpeningPriceE_ As Double, priceMovementSampleSet_() As Double, numberOfYearlyClosingPriceS_ As Integer, numberOfHistoricalPricesUsed_ As Integer = 5
CType(ParkinsonHistoricalPricesTextBox.Textbox.Text, Integer)

Dim linHiDividedByLowSquared_ As Double, parkinsonVolatility_() As Double, logReturnN_ As Double, closeToCloseHasBeenCalculateD_ = False, stdDevHasBeenCalculateD_ = False, tempStdDevMeaN_ = 0, tempHistorySummationBuffers()

'basic operation performed in this block is: Fetch a row from the raw data, calculate the results for all formulas and append the output to the result textboxes then repeat the process for the next row until all rows have been calculated.

rowCount_ += 1
currentHighPriceMovementRowO_ = GetRowOfPriceMovementData(rowCount_, highPriceMovementValueS_)
linHighOverOpeningPriceE_ As Double, linCloseOverOpenSquareD_ As Double, linCloseOverOpeningPriceE_ As Double, linOpenOverCloseMinusOneSquared_ As Double, linOpenOverCloseMinusOnSquaredE_ As Double, linLowOverClosingPriceE_ As Double, linLowOverOpeningPriceE_ As Double

Dim numberOfSetsInPriceMovementRowO As Integer, numberOfYearlyClosingPriceS_ = CountCharacterSeparatedValues(NumberOfYearlyClosingPriceSTextbox.Text, Integer)
Dim currentLowPriceMovementRowO_ = GetRowOfPriceMovementData(rowCount_, lowPriceMovementValueS_)
linHiDividedByLowSquared_ As Double, parkinsonVolatility_() As Double, logReturnN_ As Double, closeToCloseHasBeenCalculateD_ = False, stdDevHasBeenCalculateD_ = False, tempStdDevMeaN_ = 0 : tempHistorySummationBuffers()

'perform summations (first phase)

For setsCounteR_ As Integer = 1 To numberOfSetsInPriceMovementRowO_ 'loop z/n number of times
'reset and redimension variables
ReDim Preserve parkinsonVolatility_(setsCounteR_), yangZangVolatilityY_(setsCounteR_), satchellVolatility_(setsCounteR_), historicalVolatilityY_(setsCounteR_), garmanVolatilityY_(setsCounteR_), stDevVolatility_(setsCounteR_)
closeToCloseHasBeenCalculateD_ = False : stdDevHasBeenCalculateD_ = False : tempStdDevMeaN_ = 0

http://journals.uob.edu.bh
NumberOfNonZeroArrayValues(GetSetOfPriceMovementValues(currentOpenClosePriceMovementRoW_, columnCounteR_,
previous close 2, , ,
garman\text{YangZhang}\text{SummatioN}_ = 0 : \mu_O\text{SummatioN}_ = 0 : \mu_C\text{SummatioN}_ = 0
sigma_C\text{SummatioN}_ = 0 : sigma_O\text{SummatioN}_ = 0 :
stDev\text{SummatioN}_ = 0 : satchell\text{SummatioN}_ = 0 : historical\text{SummatioN}_ = 0 :
garman\text{SummatioN}_ = 0 :

For samplingDaysCounter_ As Integer = 1 To samplingDaysCounter_ 'loop n number of times
'General

HighPriceE_ = GetCharacterSeparatedValue("", currentHighPriceMovementRoW_, columnCounteR_, , , True)
LowPriceE_ = GetCharacterSeparatedValue("", currentLowPriceMovementRoW_, columnCounteR_, , , True)
OpeningPriceE_ = GetCharacterSeparatedValue("", currentOpenClosePriceMovementRoW_, columnCounteR_, , , True)
ClosingPriceE_ = GetCharacterSeparatedValue("", currentOpenClosePriceMovementRoW_, columnCounteR_, , , True)
If OpeningPriceE_ <> 0 And ClosingPriceE_ <> 0 Then
 linCloseOverOpenSquareD_ = Math.Log(ClosingPriceE_ / OpeningPriceE_) ^ 2
 linCloseOverOpenSquareD_ += (ClosingPriceE_ - tempStdDevMeaN_) ^ 2
 tempStdDevMeaN_ = tempStdDevMeaN_ / numberOfHistoricalPricesUseD_
Else
 linCloseOverCloseMinusOneSquareD_ = Math.Log(OpeningPriceE_ / ClosingPriceE_) ^ 2
End If

Else
 linOpenOverCloseMinusOneSquareD_ = 0
End If

BREAK CODE //
If columnCounteR_ = -1 Then
 columnCounteR_ = -1
End If

'STDEV //
If Not stdDevHasBeenCalculatedD_ Then
 For counteR7_ = columnCounteR_ To columnCounteR_ + numberOfHistoricalPricesUseD_- 1
 tempStdDevMeaN_ += GetCharacterSeparatedValue("", currentOpenClosePriceMovementRoW_, columnCounteR_,
 NumberOfNonZeroArrayValues(GetSetOfPriceMovementValues(currentOpenClosePriceMovementRoW_, columnCounteR_,
 numberOfHistoricalPricesUseD_))
 Next
 If tempStdDevMeaN_ <> 0 Then
 tempStdDevMeaN_ = tempStdDevMeaN_ / numberOfHistoricalPricesUseD_
 tempStdDevMeaN_ = tempStdDevMeaN_ / NumberOfNonZeroArrayValues(GetSetOfPriceMovementValues(currentOpenClosePriceMovementRoW_, columnCounteR_,
 numberOfHistoricalPricesUseD_))
 Else
 tempStdDevMeaN_ = 0
 End If
 stdDevHasBeenCalculatedD_ = True 'this indicates that tempStdDevMeaN_ has already been done so no need to re-do it
End If

'PARKINSON //
If LowPriceE_ <> 0 And HighPriceE_ <> 0 Then
 linHiDividedByLowSquared_ = Math.Log(HighPriceE_ / LowPriceE_) ^ 2
 linHiDividedByLowSquared_ += (HighPriceE_ - tempStdDevMeaN_) ^ 2
 tempStdDevMeaN_ = tempStdDevMeaN_ / numberOfHistoricalPricesUseD_
Else
 linHiDividedByLowSquared_ = 0
End If
parkinsonSummatioN_ += linHiDividedByLowSquared_

'SATCHELL //
If ClosingPriceE_ <> 0 And HighPriceE_ <> 0 And LowPriceE_ <> 0 Then
 linHighOverClosingPriceE_ = Math.Log(HighPriceE_ / ClosingPriceE_) ^ 2
 linLowOverClosingPriceE_ = Math.Log(LowPriceE_ / ClosingPriceE_) ^ 2
Else
 linHighOverClosingPriceE_ = 0
 linLowOverClosingPriceE_ = 0
End If
If OpeningPriceE_ <> 0 And HighPriceE_ <> 0 And LowPriceE_ <> 0 Then
 linHighOverOpeningPriceE_ = Math.Log(HighPriceE_ / OpeningPriceE_) ^ 2
 linLowOverOpeningPriceE_ = Math.Log(LowPriceE_ / OpeningPriceE_) ^ 2
Else
 linHighOverOpeningPriceE_ = 0
 linLowOverOpeningPriceE_ = 0
End If

http://journals.uob.edu.bh
linHighOverOpeningPriceE_ = 0
linLowOverOpeningPriceE_ = 0
End If
satchellSummationN_ += (linHighOverClosingPriceE_ * linHighOverOpeningPriceE_) + (linLowOverClosingPriceE_ * linLowOverOpeningPriceE_)

'GARMAN //
If LowPrice_ <> 0 And HighPrice_ <> 0 Then linHiDividedByLowSquared_ = Math.Log(HighPrice_ / LowPrice_) ^ 2 Else
garmanSummationN_ += (0.5 * linHiDividedByLowSquared_) - (((2 * Math.Log(2)) - 1) * linCloseOverOpenSquareD_)
GARMAN YANG ZANG //
garmanYangZhangSummationN_ += linOpenOverCloseMinusOneSquareD_ + (0.5 * linHiDividedByLowSquared_) - (((2 * Math.Log(2)) - 1) * linCloseOverOpenSquareD_)

'YANG ZANG ///
linOpenOverCloseMinusOne_ = GetCharacterSeparatedValue("", currentOpenClosePriceMovementRow_, columnCounter_ - 2, , , True)
If linOpenOverCloseMinusOne_ <> 0 And OpeningPrice_ <> 0 Then
linOpenOverCloseMinusOne_ = Math.Log(OpeningPrice_ / linOpenOverCloseMinusOne_)
Else
linOpenOverCloseMinusOne_ = 0
End If
muO_SummationN_ += linOpenOverCloseMinusOne_
muC_SummationN_ += linCloseOverOpeningPriceE_

'HISTORICAL ///
If Not closeToCloseHasBeenCalculatedD_ Then
For countR7_ = columnCounter_ + numberOfHistoricalPricesUsed - 1
 tempClosingPrice_ = GetCharacterSeparatedValue("", currentOpenClosePriceMovementRow_, countR7_ + 1, , , True)
 tempClosePlusOne_ = GetCharacterSeparatedValue("", currentOpenClosePriceMovementRow_, columnCounter_ + 1, , , True)
 tempHistoricalSummationBuffer_ += Math.Log(tempClosePlusOne_ / tempClosingPrice_)
Next
closeToCloseHasBeenCalculatedD_ = True ' this indicates that the above calculation has already been done so no need to re-do it
tempHistoricalSummationBuffer_ = tempHistoricalSummationBuffer_ / (numberOfHistoricalPricesUsed - 1)
End If

'BREAK CODE ///
If setsCounter_ = 5 Then
 setsCounter_ = setsCounter_
End If

'Standard Deviation ///
If stDevSummationN_ > 0 Then
 firstFormulaA_ = 1 / (numberOfHistoricalPricesUsed - 1)
 stDevVolatility_(setsCounter_) = Math.Sqrt(firstFormulaA_ * stDevSummationN_)
Else
 stDevVolatility_(setsCounter_) = 0
End If

'Parkinson ///
If parkinsonSummationN_ > 0 Then
 firstFormulaA_ = numberOfYearlyClosingPrices_ / (numberOfHistoricalPricesUsed * 4 * Math.Log(2))
 parkinsonVolatility_(setsCounter_) = Math.Sqrt(firstFormulaA_ * parkinsonSummationN_)
End If
Else
 parkinsonVolatility_(setsCounteR_) = 0
End If

'Satchell ///
If satchellSummationN_ > 0 Then
 firstForumulA_ = numberOfYearlyClosingPriceS_ / numberOfHistoricalPricesUseD_
 satchellVolatility_(setsCounteR_) = Math.Sqrt(firstForumulA_ * satchellSummationN_)
Else
 satchellVolatility_(setsCounteR_) = 0
End If

'Garman ///
If garmanSummationN_ > 0 Then
 firstForumulA_ = numberOfYearlyClosingPriceS_ / numberOfHistoricalPricesUseD_
 garmanVolatilityY_(setsCounteR_) = Math.Sqrt(firstForumulA_ * garmanSummationN_)
Else
 garmanVolatilityY_(setsCounteR_) = 0
End If

'Yang Zhang ///
muO_ = (1 / numberOfHistoricalPricesUseD_) * muO_SummationN_
muC_ = (1 / numberOfHistoricalPricesUseD_) * muC_SummationN_
For counteR7_ = columnCounteR_ To columnCounteR_ + numberOfHistoricalPricesUseD_ - 1
 tempOpeningPrice_ = GetCharacterSeparatedValue(",", currentOpenClosePriceMovementRow_, counteR7_ - 1, , , True)
 tempCloseMinusOne_ = GetCharacterSeparatedValue(",", currentOpenClosePriceMovementRow_, counteR7_ - 2, , , True)
 tempOpeningPrice_ = tempOpeningPrice_ / tempCloseMinusOne_ And tempOpeningPrice_ <> 0 And tempCloseMinusOne_ <> 0 Then
 sigmaO_Summation_ += (Math.Log(tempOpeningPrice_ / tempCloseMinusOne_) - muO_) ^ 2
 End If
 tempClosingPrice_ = GetCharacterSeparatedValue(",", currentOpenClosePriceMovementRow_, counteR7_, , , True)
 tempClosingPrice_ = tempClosingPrice_ / tempOpeningPrice_ And tempClosingPrice_ <> 0 And tempOpeningPrice_ <> 0 Then
 sigmaC_Summation_ += (Math.Log(tempClosingPrice_ / tempOpeningPrice_) - muC_) ^ 2
 End If
Next
K_ = 0.34 / ((1 + (numberOfHistoricalPricesUseD_ + 1) / (numberOfHistoricalPricesUseD_ - 1)))
sigmaO_ = (numberOfYearlyClosingPriceS_ / (numberOfHistoricalPricesUseD_ - 1)) * sigmaO_SummationN_
sigmaC_ = (numberOfYearlyClosingPriceS_ / (numberOfHistoricalPricesUseD_ - 1)) * sigmaC_SummationN_
sigmaRS_ = satchellVolatility_(setsCounteR_) ^ 2
yangZangVolatilityY_(setsCounteR_) = Math.Sqrt(sigmaO_ + (K_ * sigmaC_) + ((1 - K_) * (sigmaRS_)))
muO_ = 0 : muC_ = 0 : sigmaO_ = 0 : sigmaC_ = 0 : sigmaRS_ = 0

'Historical CC ///
If historicalSummationN_ > 0 Then
 firstForumulA_ = numberOfYearlyClosingPriceS_ / (numberOfHistoricalPricesUseD_ - 2)
 historicalVolatilityY_(setsCounteR_) = Math.Sqrt(firstForumulA_ * historicalSummationN_)
Else
 historicalVolatilityY_(setsCounteR_) = 0
End If

'LAST PHASE. CALCULATE MEANS AND OUTPUT TO THE NEXT LINE IN THE OUTPUT TEXTBOXES

// StdDevTextBox.Text += (stDevVolatility_.Sum() / stDevVolatility_.Length).ToString() & Chr(13) & Chr(10)
ParkinsonSolutionTextBox.Text += (parkinsonVolatility_.Sum() / parkinsonVolatility_.Length).ToString() & Chr(13) & Chr(10)
SatchellSolutionTextBox.Text += (satchellVolatility_.Sum() / satchellVolatility_.Length).ToString() & Chr(13) & Chr(10)
GarmanSolutionTextBox.Text += (garmanVolatilityY_.Sum() / garmanVolatilityY_.Length).ToString() & Chr(13) & Chr(10)
GarmanYangTextBox.Text += (garmanYangVolatilityY_.Sum() / garmanYangVolatilityY_.Length).ToString() & Chr(13) & Chr(10)
YangZangTextBox.Text += (yangZangVolatilityY_.Sum() / yangZangVolatilityY_.Length).ToString() & Chr(13) & Chr(10)
HistoricalTextBox.Text += (historicalVolatilityY_.Sum() / historicalVolatilityY_.Length).ToString() & Chr(13) & Chr(10)
Dim priceMovementValuesBuffer(Counter2) As Double
Else
 priceMovementValuesBuffer(Counter2) = 0
 Dim tmP_(0) As Double
 Return tmP_
 priceMovementValuesBuffer(Counter2) = -1
End If
Counter2 += 1
Next
GetSetOfPriceMovementValues = priceMovementValuesBuffer
End Function

Function GetNextPriceMovementValue(ByRef lastLocation_ As Integer) As Double
 ' useless function
 Dim searchBuffer_ As String
 For Counter_ As Integer = 1 To 10
 searchBuffer_ = Mid(PriceMovementsTextBox.Text, lastLocation_, 1)
 If Not searchBuffer_ = " " And Not searchBuffer_ = "" Then
 Dim start_ As Integer = lastLocation_
 End_ As Integer = 0
 enD_ = InStr(start_, PriceMovementsTextBox.Text, " ")
 If searchBuffer_ > 0 Then
 Return Mid(PriceMovementsTextBox.Text, enD_ - start_)
 ElseIf searchBuffer_ = 0 Then
 lastLocation_ = -1
 Return Mid(PriceMovementsTextBox.Text, start_)
 End If
 ElseIf searchBuffer_ = "" Then
 Return -1
 End If
 lastLocation_ += 1
 Next
 MsgBox("There is too much spacing between the price movement values. Please re-edit your data.", MsgBoxStyle.Exclamation)
 Return -1
End Function

Function AllArrayValuesAreEmpty(ByVal arraY_() As Double) As Boolean
 For Counter_ As Integer = 0 To arraY_.Length - 1
 If Not arraY_(Counter_) = -1 Then Return False
 Next
 Return True
End Function

Function NumberOfNonZeroArrayValues(ByVal arraY_() As Double, Optional ByVal startIndeX_ As Integer = 0, Optional ByVal endIndeX_ As Integer = 0) As Integer
 NumberOfNonZeroArrayValues = 0
 If endIndeX_ = 0 Then endIndeX_ = arraY_.Length - 1
 For Counter_ As Integer = startIndeX_ To endIndeX_
 If arraY_(Counter_) <> 0 Then NumberOfNonZeroArrayValues += 1
 Next
End Function

' Function GetHighestValue(ByVal valueS_() As Double) As Double
' For Counter_ As Integer = 0 To valueS_.Length - 1
' If Not valueS_(Counter_) = -1 Then
' If valueS_(Counter_) > GetHighestValue Then GetHighestValue = valueS_(Counter_)
' End If
' Next
'End Function

' Function GetLowestValue(ByVal valueS_() As Double) As Double
' GetLowestValue = valueS_(0)
' For Counter_ As Integer = 1 To valueS_.Length - 1
' If Not valueS_(Counter_) = -1 Then
' If valueS_(Counter_) < GetLowestValue Then GetLowestValue = valueS_(Counter_)
' End If
' Next
'End Function

Function GetCharacterSeparatedValue(ByVal chaR_ As String, ByVal stringG_ As String, ByVal position_ As Integer, Optional ByVal startT_ As Integer = 0, Optional ByVal returnZeroForNoResult_ As Boolean = False) As String
 If Len(stringG_) > 0 Then
 If startT_ = 0 Then startT_ = Len(stringG_)
 Dim countT_ As Integer, finD_ As Integer = startT_
 prevFinD_ As Integer = 0
 For countT_ = 1 To position_
 If GetCharacterSeparatedValue(chaR_, stringG_, position_, startT_, returnZeroForNoResult_) > 0 Then
 Return chaR_
 end If
 Next
 End Function

http://journals.uob.edu.bh
Function CountCharacterSeparatedValues(ByVal char_ As String, ByVal string_ As String) As String

' This function counts the number of values separated by the given 'char_' inside 'string_'.
If Len(string_) > 0 Then
 Dim count_ As Integer, finD_ As Integer, prevFinD_ As Integer = 0
 Do
 finD_ = InStr(finD_ + 1, string_, char_, CompareMethod.Text)
 If finD_ = 0 Or (finD_ = Len(string_)) Then Return count_ Else count_ += 1
 If finD_ - prevFinD_ > 1 Then Return count_ Else prevFinD_ = finD_
 Loop
End If
End Function

Function GetOpeningPrice(ByVal valueS_() As Double) As Double
 If Not valueS_(0) = -1 Then Return valueS_(0)
End Function

Function GetClosingPrice(ByVal valueS_() As Double) As Double
 If Not valueS_(valueS_.Length - 1) = -1 Then Return valueS_(valueS_.Length - 1)
End Function

Private Sub ExportButton_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles ExportButton.Click
 If ParkinsonSolutionTextBox.TextLength > 0 Then
 SaveFileDialog.Filter = "Comma Separated Value files(*.csv)|*.csv"
 SaveFileDialog.ShowDialog()
 Else
 MsgBox("No results have been calculated yet.", MsgBoxStyle.Critical)
 End If
End Sub

Private Sub SaveFileDialog_FileOk(ByVal sender As Object, ByVal e As System.ComponentModel.CancelEventArgs) Handles SaveFileDialog.FileOk
 ' this function processes saving the results to file
 Dim bufferR_ As String, bufferR2_ As String = ",", bufferR3_ As String = "StdDev,Parkinson,Rogers Satchell,Garman Klass,Garman Yang Zang,Historical Close-to-Close,Yang Zang" & Chr(13) & Chr(10)
 For counteR_ As Integer = 0 To ParkinsonSolutionTextBox.Lines.Length - 1
 bufferR_ = StdDevTextBox.Lines(counteR_)
 If Len(bufferR_) > 0 Then
 If Not CType(bufferR_, Double) = 0 Or Not IgnoreZerosCheckBox.Checked Then
 bufferR2_ += bufferR_ & ","
 Else
 bufferR2_ = ""
 Continue For
 End If
End Sub

http://journals.uob.edu.bh
End If
End If
buffeR_ = ParkinsonSolutionTextBox.Lines(counteR_)
If Len(buffeR_) > 0 Then
 If Not CType(buffeR_, Double) = 0 Or Not IgnoreZerosCheckBox.Checked Then
 buffeR2_ += buffeR_ & ""
 Else
 buffeR2_ = ""
 Continue For
 End If
End If
End If
buffeR_ = SatchellSolutionTextBox.Lines(counteR_)
If Len(buffeR_) > 0 Then
 If Not CType(buffeR_, Double) = 0 Or Not IgnoreZerosCheckBox.Checked Then
 buffeR2_ += buffeR_ & ""
 Else
 buffeR2_ = ""
 Continue For
 End If
End If
End If
buffeR_ = GarmanSolutionTextBox.Lines(counteR_)
If Len(buffeR_) > 0 Then
 If Not CType(buffeR_, Double) = 0 Or Not IgnoreZerosCheckBox.Checked Then
 buffeR2_ += buffeR_ & ""
 Else
 buffeR2_ = ""
 Continue For
 End If
End If
End If
buffeR_ = GarmanYangTextBox.Lines(counteR_)
If Len(buffeR_) > 0 Then
 If Not CType(buffeR_, Double) = 0 Or Not IgnoreZerosCheckBox.Checked Then
 buffeR2_ += buffeR_ & ""
 Else
 buffeR2_ = ""
 Continue For
 End If
End If
End If
buffeR_ = HistoricalTextBox.Lines(counteR_)
If Len(buffeR_) > 0 Then
 If Not CType(buffeR_, Double) = 0 Or Not IgnoreZerosCheckBox.Checked Then
 buffeR2_ += buffeR_ & ""
 Else
 buffeR2_ = ""
 Continue For
 End If
End If
End If
buffeR_ = YangZangTextBox.Lines(counteR_)
If Len(buffeR_) > 0 Then
 If Not CType(buffeR_, Double) = 0 Or Not IgnoreZerosCheckBox.Checked Then
 buffeR2_ += buffeR_ & ""
 Else
 buffeR2_ = ""
 Continue For
 End If
End If
End If

If Len(buffeR2_) > 0 Then
 buffeR3_ += buffeR2_ & Chr(13) & Chr(10)
 buffeR2_ = ""
Next
My.Computer.FileSystem.WriteAllText(SaveFileDialog.FileName, buffeR3_, False)

End Sub

Private Sub PriceMovementsTextBox_TextChanged(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles PriceMovementsTextBox.TextChanged
End Sub
End Class