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Abstract In this paper, we employ an approximate analytical method, namely the optimal homot-
opy asymptotic method (OHAM), to investigate a thin film flow of a third grade fluid down an
inclined plane and provided accurate solution unlike other erroneous results available in the liter-
ature. The variation of the velocity field for different parameters is compared with the numerical
values obtained by the Runge—Kutta Fehlberg fourth—fifth order numerical method and with the
homotopy perturbation method (HPM). Finally, it was found that for all values of parameters

OHAM agrees well with the numerical disparate HPM.
© 2013 Production and hosting by Elsevier B.V. on behalf of University of Bahrain.

1. Introduction

Most scientific phenomena are inherently nonlinear such as
heat transfer, and many of them have no analytical solution.
Therefore, many different methods have been established by
researchers to overcome such nonlinear problems. These meth-
ods include the artificial parameter method by (He, 2006a,b),
the variational iteration method by (He, 2000), the homotopy
analysis method by (Liao, 2003), the homotopy perturbation
method by (He, 2006¢) and the optimal homotopy asymptotic
method by (Marinca and Herisanu, 2008) among others. The
homotopy perturbation method (HPM) provides an approxi-
mate analytical solution in a series form. HPM has been widely
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used by numerous researchers successfully for different physi-
cal systems such as, bifurcation, asymptotology, nonlinear
wave equations, oscillators with discontinuities by (He,
2004ab, 2005a,b), reaction-duffision equation and heat radia-
tion equation by (Ganji and Rajabi, 2006; Ganji and Sadighi,
2006) and MHD Jeffery—Hamel problem by (Moghimi et al.,
2011).

Significant classes of fluids commonly used in industries are
non-Newtonian fluids. The applications of these fluids arise in
areas such as synthetic fibers, food stuffs, drilling oil and gas
wells, extrusion of molten plastics and polymers among others.
The related literature indicates that the third grade fluid has
been investigated by many researchers for different geometries
and with different techniques.

Here, we consider the steady uni-directional flow of an
incompressible third-grade fluid down a uniform inclined
plane. For the third grade fluid, the first four terms of Taylor
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series are using the stress rate of strain relation. The third
grade fluid models are complicated due to a large number of
physical parameters that have to be determined
experimentally.

The steady flow of third grade fluid in a bounded domain
with Dirichlet boundary conditions analyzed by Adriana
et al., 2008. Bresch and Lemoine (1999) have shown the exis-
tence of the solutions for non-stationary third-grade fluids
and used homogenous boundary condition for the global
and local existence of the fluid velocity equation. Many
researchers (Zhang and Li, 2005; Busuioc et al., 2008; Khan
and Mahmood, 2012; Siddiqui et al., 2008; Hayat et al.,
2008, 2009; Kumaran et al., 2012) have investigated thin film
flow of the third grade fluid, in addition Hameed and Ellahi,
2011 studied thin film flow for MHD fluid on moving belt.
Moreover, Elahi and Riaz, 2010; Ellahi et al., 2011; Ellahi,
2012 successfully provided the series solution for non-Newto-
nian MHD flow with variable viscosity in a third grade fluid
and discussed heat transfer in porous cylinder.

The optimal homotopy asymptotic method is an approxi-
mate analytical tool that is simple and straightforward and does
not require the existence of any small or large parameter as does
the traditional perturbation method. The optimal homotopy
asymptotic method (OHAM) has been successfully applied to
a number of nonlinear problems arising in fluid mechanics
and heat transfer by various researchers (Herisanu et al., 2008;
Mabood et al., 2013a,b; Marinca and Herisanu, 2008, 2010a,b).

Mathematical modeling of non-Newtonian fluid flow gives
rise to nonlinear differential equations. Many numerical and
analytical techniques have been proposed by various research-
ers. An efficient approximate analytical solution will find enor-
mous applications. In this paper, we have solved the governing
nonlinear differential equation of the present problem using
OHAM and compared with numerical and HPM. It is impor-
tant to mention here that the approximate analytical and
numerical solutions are in a good agreement but better than
the results of Siddiqui et al., 2008.

This paper is organized as follows: First in Section 2, gov-
erning equations of the problem are presented. In Section 3 we
described the basic principles of OHAM. The OHAM solution
is given in Section 4. In Section 5, outlines of HPM are dis-
cussed with HPM solution. In Section 6, we analyzed the com-
parison of the solution using OHAM with the numerical
method and existing solution of HPM. Section 7 is devoted
for the concluding remarks.

2. Governing equation

The thin film flow of an incompressible third grade fluid down
on an inclined plane with inclination 70 is governed by the
following nonlinear boundary value problem in a dimension-
less form (Siddiqui et al., 2008).

du du\* dPu
—+6pl—) —+m=0 1
Teon(G) o m
Subject to the boundary conditions:
u(0) =0, %:0 at y=1 (2)
As m :gpsinoc’ B = (B, +B5)
It It

where u is the fluid velocity, p is the density, u is the dynamic
viscosity, fi, and f; are the material constants of the third
grade fluid, g is acceleration due to gravity.

3. Basic principles of OHAM

We review the basic principles of OHAM as expounded in
Herisanu et al., 2008 and other researchers (Mabood et al.,
2013a; Marinca and Herisanu, 2008).

(1) Consider the following differential equation:

Apv(x)] +a(x) =0, xeQ (3)

where Q is problem domain, A(v) = L(v) + N(v), where L, N
are linear and nonlinear operator, v(x) is an unknown func-
tion, a(x) is a known function,

(ii) Construct an optimal homotopy equation as:

(1 =pIL(¢(x;p) + a(x)] = H(p)[A(¢(x;p) +a(x)] =0 (4)

where 0<p<1 is an  embedding  parameter,
H(p) = Y"}",p*Cy is auxiliary function on which the conver-
gence of the solution is greatly dependent. The auxiliary func-
tion H(p) also adjusts the convergence domain and controls
the convergence region.

(iii) Expand ¢(x; p, C;) in Taylor’s series about p, one has an
approximate solution:

o0

$(xip, C) = wo(x) + Y wlx, G)pf, j=1,2,3,.. (5
k=1
Many researchers have observed that the convergence of
the series Eq. (5) depends upon C;, (j =1, 2,..., m), if it is
convergent then, we obtain:

7= vo(x) + Y _w(x; C)) (6)
k=1

(iv) Substituting Eq. (6) in Eq. (4), we have the following
residual:

R(x; Cj) = L(¥(x; G)) + a(x) + N(v(x; G)) (7

IfR(x; C;) = 0, then ¥ will be the exact solution. For nonlin-
ear problems, generally this will not be the case. For determin-
ing C;, (j =1,2,...,m), Galerkin’s Method, Ritz Method or
the method of least squares can be used.

(v) Finally, substitute these constants in Eq. (7) and one can

get the approximate solution.

4. Solution of the problem via OHAM

According to the OHAM, applying Eq. (4) to Eq. (1):
(1= p)(u" +m) — H(p, C)}{ul" + 6Bu>u" +mi}y = 0 (8)

where primes denote differentiation with respect to y.
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We consider u and H(p, C;) as the following:

{ u = uy + pu, + p*us
H(p,C)) = pC, +p*C,

Using Eq. (9) in Eq. (8) and some simplification and rear-
rangements of the terms based on the powers of p, we obtain
zeroth, first and second order problems:

Zeroth order problem:

©)

up(y) = —m (10)

with boundary conditions:

up(0) =0, uy(l1)=0 (11)
Its solution is

Uy = % (2my — my?) (12)
First order problem:

(v, Cr) = m+mCy +6BC () uy + (1+ Cuig(v) - (13)

with boundary conditions:

w1 (0) =0, ¥(1)=0 (14)

having solution
u (v, Cy) :%(4m3ﬁyC, — 6m’By*Cy + 4 By C
—mRAC) (15)
Second order problem:
iy (y, C1, C2) = mCs + Catty + 6BCs(u) vy
+ 12BC il ull + 6BC (u)) ul! + (1
+ C)uf (16)
with boundary conditions
w(0) =0, (1) =0 (17)

Its solution becomes

Consider the following differential equation and boundary
condition:

A(u) —flr)=0, reQ (20)
with boundary conditions:
ou
Blu,— | =0 r 21
(w5r) =0 re o1

where A, B, f(r), I are a general differential, a boundary
operator, a known analytical function and the boundary of
the domain €, respectively. Generally speaking, the operator
A can be divided into a linear part L and a nonlinear part
N(u). So Eq. (20) can be written as:

L(u)+ N(u)—f(r)=0 (22)
By the homotopy method, we construct a homotopy
v(r,p) : Q x [0,1] — R which satisfies:
H(v,p) = (1 = p)[L(v) = L(uo)] + plA(v) = f(r)] =0, p
€[0,1], reQ (23)
or
H(v,p) = L(v) — L(uo) + pL(uo) + p[N(v) = f(r)] = 0 (24)

where p € [0, 1] is an embedding parameter, while u, is an ini-
tial approximation of Eq. (20) which satisfies the boundary
conditions. Obviously, from Egs. (23), (24) we obtain:

H(v,0) = L(v) — L(ug) = 0 (25)

Hv,1)=A(v) —f(r)=0 (26)

The changing process of p from zero to unity is just that of
v(r, p) from uy(r) to u(r). In topology, it is called deformation,
while L(v) — L(up) and A(v) — f(r) are called homotopy.
According to the HPM, we can use embedding parameter p
as a “‘small parameter”, and assume that the solutions of
Eqgs. (23) and (24) can be written as a power series in p:

V=194 pv, + P+ ... (27)

(v, C1, C2) = L(4m* ByCy — 6m> By Cy + 4n By C — m* Byt Cy + 4m? By Cl + 24m° By C}
—6m>By*CT — 60m° B2)2C + 4m* By> CT + 80m* B3> C7 — m* By* C7 — 60m’ B*C (18)
+24m° B2 Y5 C — 4m’ B0 CT + 4m* By C, — 6m By* Cs + 4m* By C, — m By* C)

We obtain the three terms’ solution using OHAM for p = 1
iy, Ci,C2) = up(y) + wr(y, C1) + wa(y, C1, C2) (19)

We use the method of least squares to obtain the unknown
convergent constants C;, C, in Eq. (19).

For the particular case if f=0.5 and m =1, we have
C; = —0.20888457, C, = —0.04214067

5. Outlines of HPM

We review the basic idea of HPM (He, 2006c¢).

Setting p = 1 yields in the approximate solution of Eq. (27)
to:
uzlin?v:v0+vl o (28)
—

Solution of Eq. (1) with boundary conditions (Eq. (2)) via the
homotopy perturbation method can be seen in Siddiqui et al.,
2008. The second order series solution is:

2 4 3 2
y NG
) — , L 6B — L+ L 2
u() m<} 2)+ﬁm <12 3713 3)
s (v 5 1000 5t 0
+36mﬁ(3 <t ct3 s (29)
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Table 1 Comparison of OHAM with NM and HPM (Siddiqui et al., 2008) for f = 1.4, m = 0.75.

X OHAM HPM NM Error (HPM) Error (OHAM)
0.0 0 0 0 0 0
0.1 0.049261 0.221091 0.0484625 1.726 7.9%10°*
0.2 0.095452 0.360656 0.0936873 0.266 1.7x107°
0.3 0.138530 0.449731 0.1353969 0.314 3.1x1073
0.4 0.178066 0.508866 0.1732599 0.335 48x107°
0.5 0.213394 0.55069 0.2068777 0.343 6.5% 1073
0.6 0.243738 0.582128 0.2357687 0.346 7.9% 1073
0.7 0.268316 0.606284 0.2593566 0.346 89x 1073
0.8 0.286429 0.623979 0.2769773 0.347 9.4x107°
0.9 0.297529 0.634942 0.2879372 0.347 9.5%x 1072
1.0 0.301269 0.638672 0.2916666 0.347 9.6x107°
0.8 r T T T T T T T T g T T T
04l 1
0.6 m=04,0.6, 0.8, 1
03 ; -
S oaf z
=1 5
02f ]
-~ OHAM
02f g
—— NM 0.1 ]
-+ HPM
0.0¥ . . . ol . N N N N
0.0 0.2 0.4 0.6 0.8 L0 “ 00 02 0.4 0.6 038 1.0
y y
Figure 1 Comparison of velocity profile using OHAM, NM and Figure 3  Effects on velocity profile for various values of m at

HPM (Siddiqui et al., 2008) for f=0.5, m = 1.

04 g

03}

u(y)

02}

p£=0,1,12,14

0.1}

0.0

0.0 0.2 0.4 0.6 0.8 1.0

y

Figure 2
m = 0.75.

Effects on velocity profile for various values of f§ at

6. Results and discussion

This section presents the effects of controlling parameters on
the velocity profile in the form of graphical and tabulated re-
sults. In order to validate the accuracy of our approximate
solution via OHAM, we have presented a comparative study
of OHAM solution with numerical and existing HPM solu-

B =0.5.

u(y)

y

Figure 4 Comparison of velocity profile using OHAM, NM and
HPM (Siddiqui et al., 2008) for =25, m = 0.75.

tions. The numerical results will be denoted by NM and
HPM results by HPM. The numerical results are from the Run-
ge—Kutta Fehlberg fourth—fifth order method and HPM results
are from Siddiqui et al., 2008. Table 1 shows the comparison of
our present OHAM results with NM and HPM for ff =14,
m = (.75 and the absolute errors. It is noteworthy to mention
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Figure 5
m = 0.75.

Effects on velocity profile for larger values of f at

u(y)

Figure 6
p=0.5.

Effects on velocity profile for larger values of m at

here that OHAM’s lowest error is good as compared to
HPM. The efficiency of OHAM can be concluded from
Fig. 1 in which we compared the solution using OHAM with
NM and HPM for particular values of the controlling
parameters.

Fig. 2 illustrates the velocity profile for different values of
the controlling parameters. For increasing values of parameter
p and for the fixed value of m, a decrease in the velocity profile
is observed, but (for the same values of the parameters f§ and
m) the solution described in Fig. 1(a) of HPM is relatively
opposite which is invalid and this was also noted by Hayat
et al., 2008. Fig. 3 depicts that for increasing values of m keep-
ing fixed value of f will cause the velocity profile to also in-
crease. This is an agreement (in terms of velocity profile
behavior) with the corresponding results for HPM shown in
Fig. 1(b) of Siddiqui et al., 2008. However, the values of veloc-
ity profile of Fig. 3 obtained via OHAM are much closer to the
numerical values as compared to HPM solution in Fig. 1(b) of
Siddiqui et al., 2008.

It is important to note that, for the large values of fluid
parameters f§ and m the solution of Siddiqui et al., 2008 is
not correct. This was also pointed out by Hayat et al., 2008
and is shown in Fig. 4. But unfortunately, the velocity profile
displayed in Figs. 1 and 2 of Hayat et al., 2008 is also not cor-

rect as pointed out by Kumaran et al., 2012 and have provided
the correct version of Figs. 1 and 2 of Hayat et al., 2008. The
approximate analytical solution via OHAM for the larger val-
ues of fluid parameters § and m can be seen from Figs. 5 and 6,
confirming the strength of OHAM.

7. Concluding remarks

In this paper, we have studied a thin film flow of third grade
fluid down an inclined plane. Both approximate analytical
and numerical results are obtained for this nonlinear problem.
The results are sketched and discussed for the fluid parameter
p and for constant m. It is found that optimal homotopy
asymptotic method (OHAM) results are much better than
HPM results. For large values of non-Newtonian parameters
HPM solution is invalid whereas OHAM solution is convinc-
ing. Finally, we conclude that OHAM provides a simple and
easy way to control and adjust the convergence region for
strong nonlinearity and is applicable to highly nonlinear fluid
problems.
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