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Abstract: The Tsakok test of fit is used to obtain an exact interval estimate of distributions and achieves exact two-sample tests, 

UMPU in a class of two-sided alternatives and not conditional on marginal totals. Comparisons and illustrations are made, an 

investigation into independent events is undertaken and an algorithm for computing the significance level of the Tsakok test of fit is 

given. 
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1. INTRODUCTION  

The chi-squared test by Pearson [1] has been 
extensively used to estimate distributions and in 
contingency tables, but as Kendall and Stuart [2, p. 453] 
pointed out, it cannot be expected to be unbiased in 
general; other than being inexact and uses distributions 
conditional on marginal totals. These are overcome by the 
Tsakok [3] test of fit, since it is exact (with test sizes 
easily calculated directly from the multinomial 
distribution) and Uniformly Most Powerful Unbiased 
(UMPU) in a class of two-sided alternatives. 

The Tsakok test of fit enables an exact UMPU two-
sample test, using distributions which are not conditional 
on marginal totals, and so compares favorably to other 
alternatives. It is a frequent practical problem, as the 
example illustrates, and solves the two-sample problem; 
considered by Euler (Kendall and Stuart [2], p 512). 

2. ESTIMATING DISTRIBUTIONS  

The Tsakok [3] test of fit has been shown to exist as 
specified: Let independent observations be made on a 
random vector X in R

N
, with unknown, possibly 

continuous, distribution F. The range along which X 
varies is partitioned into k mutually exclusive pre-
specified classes i = 1, . . .k. For each class i, let ni be the 
number of observations falling into i, and pi be the 
probability of an observation occurring in class i. So

 

k

i 1
 pi = 1. Let  

k

i 1
ni = n. If F = F0 for some 

distribution F0, then pi =p0i   i. ni = xi from the data. So 
xi is a particular value of ni. 

To test H0: pi = p0i (i = 1, ...k) against H1 : pi≠ p0i for at 
least one i; the test  f  is, in the non-randomized case: 

f = 1 when ni ≤ ci1 or ni ≥ ci2 given nj  j ≠ i, k for at 
least one i = 1, ...k — 1; 

f = 0 otherwise; 

where the integer interval acceptance region [(ci1,ci2)|nj 

 j ≠ i, k] for which 0 ≤ ci1 ≤ n, 0 ≤ ci2 ≤ n is subject to 

E (f |H0) = α 0 < α < 1                                         (1) 

E(n f |H0) = α E(ni|H0)                                             (2) 

for i = 1, ...k — 1, at the test size α. This test is UMPU 
against alternatives under H1 for which pi differs from p0i 
for only one i (i = 1, ...k — 1). 

Lemma 2.1. Properties of unbiasedness condition (2) 

given n and n j  j ≠ i,k. 

(i) The Tsakok test  f  satisfies the unbiasedness condition 
when ci1 = np0i — di1, ci2 = np0i + di2, for some integers di1, 
di2 > 0 for which n ≥ ci1 ≥ 0 and 0 ≤ci2 ≤ n. 

(ii) The unbiasedness condition for f is satisfied iff there 
exists real functions I1(di1), I2 (di2) such that E((ni — np0i) f 
|H0) = I2(di2) — I1(di1) = 0. I1(di1)≥ 0, I2(di2) ≥ 0 and vary 
monotonically with di1, di2 respectively, with di1, di2 
sufficiently large to prevent them from satisfying the 
conditions: 

di = di1 or di2 for which ni = npi + di   Z, the set of 

integers (i = 1, ...k),  

k

i 1
di = 0, |dr — ds| < 1 , and 

ps(npr + dr) ≠ pr(nps + ds + 1) for any distinct pair of 
classes r and s. 

http://www.uob.edu.bh/english/pages.aspx?module=pages&id=2922&SID=684
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(iii) There exists α such that integers dij = mij and mi1 < 
np0i, mij/n < 1 (j = 1, 2) for which ci1 = np0i — mi1, ci2 = 
np0i + mi2 for any choice of p0i (i = 1, ...k — 1) with 

 

k

i 1
p0i = 1. 

Proof. (i) and (ii). Putting ci1 = np0i — di1, ci2 = np0i + 

di2 for some integers di1, di2 > 0, given nj   j ≠ i, k; the 
di1, di2 are chosen to satisfy the unbiasedness condition as 
follows: 

E(ni f |H0) = E ((ni — np0i) f |H0) + np0iE(f |H0) = 
np0iE(f |H0) = αE(ni |H0) 

iff E ((ni — np0i) f |H0) = 0, given that np0iE(f | H0) is 
bounded, with n fixed. With randomization constants γ1, 
γ2, this can be expressed as: 

E((ni — np0i) f |H0) = I2 (di2) — I1(di1) = 0 

where, if Pi = P(ni ≤ x |H0, nj   j ≠ i, k) for some real 
x ≥ 0, and 0 ≤ γ1 ≤ 1,  0≤ γ2 ≤ 1; 

I2 =  ni — np0idPi+γ1di2P(ni — np0i = di2| H0, nj  j ≠i, k)                                                  

(3) 

(ni :np0i+di2 <ni≤n—∑(j: for all j ≠ i,k) nj) 

         

I1=   np0i — nidPi+γ2di1P(np0i — ni = di1 |H0, nj  j ≠ i, k)                                                             

(4) 

(ni:np0i
—

di1 >ni≥0) 

By inspection, I1 and I2 are both positive and vary 
monotonically with di1, di2 respectively, where di1, di2 > 0, 
when     di1, di2 are sufficiently large so that (np0i

—
di1, 

np0i+di2) contains the maximal value of Prob.(n1, ...nk |H0), 
given i. According to Tsakok [3], these conditions are: 
integer values of di = di1 or di2 for which ni = npi + di   Z 

(i = 1, ...k), where  

k

i 1
di = 0, |dr — ds| < 1 , and    ps 

(npr + dr) ≠pr (nps + ds + 1) for any distinct pair of classes 
r and s. 

(iii) Since 1 > α > 0, ci1 = np0i — di1 and ci2 = np0i + di2 

given nj  j ≠ i, k, this means 0 ≤ ci1 ≤ np0i
 
and np0i ≤ ci2 ≤ 

n, as ci1 ≥ 0 and ci2 ≤ n; being possible values of ni to 
satisfy (1). Setting di1 = mi1

 
and di2 = mi2 when ci1 = np0i 

— di1 and ci2 = np0i + di2, for some integers mi1
 
and mi2, α 

is then chosen to be sufficiently large so that mi1 < np0i, 
mi1/n < 1 and mi2/n < 1 (i = 1, ...k — 1), for any choice of 
p0i (i = 1, ...k)                                                                                                                 
⁭  

Definition 2.2. A value of pi is said to be acceptable by 
a test f at the test size α if it can be accepted to be a value 
of pi if tested using the test f at the test size α. 

Definition 2.3. A test size α   (0,1) which satisfies 
the conditions of Lemma 2.1 is said to be sufficiently 
large. 

Theorem 2.4. For sufficiently large test size α given n: 

(i)  There exists an interval estimate (pli, pui) of pi (i = 1, 
...k — 1) formed from acceptable values of pi using the 
test f . 

(ii) There exists a sequence of values pui1r and pui2r 
such that pui1r ≥ pui ≥ pui2r

 
with pui1r→ pui and pui2r → pui as r 

→ ∞ (i = 1,...k — 1). Similarly, there exists a sequence of 
values pli1r and pli2r such that pli1r ≥ pli ≥ pli2r with pli1r→ pli 
and pli2r → pli as r → ∞ (i = 1, ...k — 1). 

Proof. (i) In the test f, the unbiasedness condition is 
met by choosing di1/di2 as follows: If di1 is such that I1 (di1) 
is too large when compared to I2 (di2), E((ni — np0i) f |H0) 
< 0, while if di2   is such that I2(di2) is too large in relation 
to I1(di1), E((ni — np0i) f |H0) > 0. Thus as E((ni — np0i) f 
|H0) varies with di1, di2 (di1, di2 > 0); there is a value of 

di1/di2 for which E(ni — np0i) f | H0) = 0, possibly using 
randomization constants γ1, γ2.The actual values of di1, di2 
can then be chosen to satisfy the required test size. α must 
moreover be sufficiently large with P(ni > np0i + di1 |H0, nj 

 j ≠ i,k) > 0 and P(ni < np0i — di1 |H0, nj   j ≠ i, k) > 0, 
since otherwise it would not be a two-sided test. 

di1 and di2 (i = 1, ...k — 1) thus chosen meets the 
unbiasedness requirement for any p0i   (0, 1), and are 
bounded above by some integers mi1, mi2 respectively 
such that mij/n < 1 (j = 1, 2), for sufficiently large α. 

Suppose changing p0i
 
to p0i + Δp0i, for some real Δp0i > 

0, causes E((ni — np0i) f |H0) ≠ 0. Unbiasedness can then 
be restored by varying di1/di2, at the given constant test 
size. If p0i = xi/n initially, successive increments of Δp0i 
may then require corresponding adjustments in di1/di2 at 
the required test size. This process can continue until xi/n 
does not belong to the interval (xi/n + δ — mi1 /n, xi/n + δ 
+ mi2/n); where p0i = xi/n + δ, for some real δ obtained 
from increases of Δp0i such that xi/n + δ > mi1/n. Similar 
considerations apply if variations p0i — Δp0i are made, 
where Δp0i > 0, starting from when p0i = xi/n. This shows 
that, for a given sample of observations, values of p0i 
which may be accepted for pi vary within an interval for 
each i, using f given sufficiently large α and mi1, mi2 (i = 
1, ...k — 1). 

(ii) Let (pli, pui) be an interval along which acceptable 
values of pi are allowed to vary at a sufficiently large α, 
with f. An iterative procedure is now used to determine 

(pli, pui). Using an acceptance region of pi (using f ) as an 
initial estimate of (pli, pui), an upper and lower bound is 
obtained for pli and pui by trial and improvement. 

Let the upper and lower bound of pui be puiUr
 
and puiLr 

respectively at the r
th
 iteration, with f. Denote the 

corresponding acceptance regions for puiUr and puiLr
 
by 

(ci1(U, r), ci2(U, r)) and (ci1(L, r), ci2 (L, r)) respectively. 
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With (ci1,ci2) as above with p0i varying with the r
th
 

iteration, an upper bound of pui is a hypothetical value of 
pui which is rejected, with ni < ci1(U, r) for rejection of 

puiUr. A lower bound of pui is a hypothetical value of pui 
which is accepted, with (ci1(L, r) < ni < ci2(L, r)) for 
acceptance of puiLr. The inequality puiUr ≥ pui ≥ puiLr is now 
constructed as follows: 

 An initial test is made using f to obtain an acceptance 
region (ci1, ci2) of pi (i = 1,...k — 1). 

Then test H0 : pi = p0i (i = 1, ...k) against H1 : pi ≠ p0i 
for at least one i; where p0i is chosen such that: 

When r = 1, p0i≈ci2(L, 1)/n = ci2/n (i = 1, ...k — 1), 
where the approximation is made subject to ∑ p0i = 1. If 

p0i (i = 1, ...k) is accepted, then puiL1 = p0i (i = 1, ...k). A 
new set of hypothetical values of p0i (i = 1,...k —1) is 
chosen such that p0i> puiL1 (i = 1, ... k— 1) which are 
rejected when tested. For these rejected p0i (i = 1,...k)), set 
puiU1 = p0i (i = 1,...k). 

Otherwise (r = 1), if p0i (i = 1,...k) is rejected, then puiU1 
= p0i (i = 1,...k). A new set of hypothetical values of p0i (i 
= 1,...k — 1) is chosen such that p0i < puiU1 (i = 1,...k — 1) 
which are accepted when tested. For these accepted p0i (i 
=

 
1, ...k), set puiL1 = p0i (i = 1, ...k). 

With r ≥ 1, p0i (i = 1, ...k — 1) is chosen at the r +
 
1

th
 

iteration such that puiUr > p0i > puiLr if puiUr > puiLr; and 
otherwise p0i = pui = puiUr if puiUr = puiLr, with the iteration 
stopped. 

If p0i (i = 1,...k — 1) is accepted, then puiL(r+1) = p0i (i = 
1, ...k — 1) and puiU(r+1) = puiUr (i = 1, ...k — 1). 

Otherwise, puiL(r+1) = puiLr (i = 1,...k — 1) and puiU(r+1) = 
p0i (i =1,...k — 1) .Therefore puiU(r+1)—puiL(r+1) > 0 (i = 1, 
...k —1) and is decreased at the r +

 
1

th
 iteration. As r → ∞, 

puiUr — puiLr → 0 (i = 1, ...k — 1). But puiUr — puiLr = (puiUr 
— pui) + (pui — puiLr). So puiUr →pui and puiLr →pui as r → 
∞ (i = 1, ...k — 1) since puiUr ≥ pui ≥ puiLr. A similar result 
applies to pli (i = 1, ...k — 1).                                                                                                                                                             
⁭   

So pui and pli (i = 1, ...k — 1) can be estimated to any 
accuracy, at a given sufficiently large test size α. This is 
possible because the above intervals (ci1, ci2) can be 
computed from the data and the null distribution, as 
shown by Lemma 2.1 and Algorithm 5.6 of the Appendix. 

Example: Consider some of the data of Topp et al. [4]. 
This is summarized in Table 1. For the above case, i = 1 
and p1 is the probability of an occurrence of diplegia in 
the sample. Thus (pl1, pu1) is the interval estimate of p1 
with a probability of .976 for the occurrence of diplegia 
for Preterm 1983-86; so that the Tsakok test of fit was 
used at a significance level of 1-.976 (i.e., .024). The 
small variations in the confidence levels arise out of the 
non-randomized tests applied to discrete data. Normality 
is not assumed. 

 

TABLE I.  PRETERM AND TERM DIPLEGIA OCCURRENCE  

 

3. COMPARING THE DISTRIBUTIONS  

As indicated by Tsakok [5], the interval estimates of 
distributions immediately enable comparisons between 
them to be made. This is also discussed in Tsakok [6]. The 
technique is similar to that used by Tsakok [7] to solve the 
Behrens-Fisher problem. 

Thus if F1 and F2 are two distributions from 
independent populations 1 and 2, the problem is to decide 
with a test f 12 between the hypotheses:    

 H: F1 = F2 = F, say, and K: F1≠F2;  

from independent random samples of size nj for each 
population j (j = 1, 2). With the above method, let Cj be 
the set of distributions that are acceptable hypothetical 
distributions for population j using a Tsakok test of fit f j at 
significance level αj. Thus P(F   Cj|Fj = F)=1— αj = 1— 
E(f j|Fj = F). Since the samples are independent, P((F   

C1)   (F   C2)|F1 = F2 = F) = (1 — α1)(1 — α2). With f 

12=  1— (1 — f 1)(1 — f 2), the test size α of H is E(f 
12|H)=E(1 — (1 — f 1)(1 — f 2)) = α = 1 — (1 — α1)(1 — 
α2), being the probability that at least one of the events (F 
  Cj|Fj = F) does not occur. 

Let Q = C1   C2. If Q is empty, at least one of the events 

(F   Cj|F = Fj) will not occur, leading to: 

Reject H if Q is empty. 

When Q is not empty, H may be either accepted or 
rejected, depending on whether or not the F chosen by the 
test of fit belongs to Q, showing that the concept of 
acceptance regions is inadequate. To overcome this 
inadequacy, the following complementary concept is 
proposed: 

Definition 3.1. With hypothetical distribution F0 fully 
specified, P(Q) = P(F0   Q|F = F0). 

Theorem 3.2. Using the test f 12 = 1 — (1 — f 1)(1 — f 
2) at the test size α, 0 ≤ P(Q) ≤ 1 — α. 

Proof. For f j, Cj is of the form (pi, (i = 1, ...k — 1) : pi 
  (plij, puij), i = 1, ...k — 1), where the classes i are 
mutually exclusive, and (plij,puij) is a real interval for 
which plij < pi < puij with probability 1 — αj. Let (ai, bi) = 

 j (plij, puij), i = 1, ...k — 1. Then Q = (pi, (i = 1, ...k — 

1): pi   (ai, bi), i=1, ...k — 1). For a member F0 of Cj with 
(cij1, cij2) as the acceptance region for population j (i = 

 Preterm 1983-80 Term 1987-90 

Sample Size 170 171 

No (%) Diplegia 113(66) 69(40) 

(pl 1, pu 1) (.58,.70) (.36,.49) 

Confidence level .976 .979 
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1,,...k — 1) using f j at the test size αj, let Aj = ((cij1/nj, 
cij2/nj), i = 1, ...k — 1) for population j using f j for the 
hypothesis that Fj = F0. So event (F0   Aj|Fj = F0) occurs 
whenever event (f j= 0|Fj= F0) occurs at the test size αj, 
with F0 partitioned into mutually exclusive class 
probabilities p0i  (i = 1, ...k) as above, since then p0i   
(cij1/nj, cij2/nj) (i = 1, ...k — 1), with the hypothesis (Fj = 

F0) accepted. So P(F0   Q|F = F0) = P(F0    jAj|F1 = F2 

= F0) = P(F0    jAj |F1 = F0)P(F0    jAj |F2 = F0). 

Hence 0 ≤ P(Q) ≤ 1 — α. In particular, P(Q) = 0 if Q = 0. 

The above expression for P(Q) uses the fact that the 

events Es = (F0    jAj |Fs = F0) are independent, for s = 

1, 2. This is true because Es is contained in Gs only, where 
Gs = (F0   As|Fs = F0), and G1, G2 are independent by 
hypothesis. For if E1 and E2 were not independent, then 
when Es = Gs (s = 1, 2), this contradicts the hypothesis of 
independence of G1, G2.                                                                                                                                                                                           
⁭  

The Appendix proves a more general result. 

Values of P(Q) close to its maximum or indicating 
considerable (at least 95%) overlap with at least one of the 
confidence intervals support the view that H should be 
accepted but not otherwise, as it suggests that a Type II 
error would then be made. Thus corrective action can be 
taken if necessary. P(Q) is not needed if Q = 0 (i.e. Q is 
empty). The asymptotic properties of P(Q) have been 
considered by Tsakok [6]. 

Since the method is to measure the amount of overlap 
between confidence intervals for the comparisons, there is 
no p value, but P(Q) instead. The method described is 
now applied to the above data. Hence 

F1 = distribution of the incidence of diplegia for 
Preterm 1983-86 

F2 = distribution of the incidence of diplegia for Term 
1987-90 

Q = 0, from Table 1. 

Thus H is rejected at .04 (1 significant figure) 
significance level. 

The two-sample test using the Tsakok technique has 
shown that, due to its exact UMPU properties, it is able to 
detect differences where Topp et al. [4] have failed using 
chi-squared tests at the .05 significance level; as the latter 
does not share these characteristics. 

This is just one of several significant differences 
which Topp et al. [4] failed to discover because they 
relied on the asymptotic approximations of chi-squared 
tests and marginal totals. 

The choice of class probabilities is not unique, but 
since for given k, the number of classes, each set of 
possible mutually exclusive pre-specified class 
probabilities is different from the other, it is not possible 

to compare the outcome of the above tests with each 
other; resulting in no possible contradictions between 
these above tests. In fact, the different sets of class 
probabilities complement each other in the data analysis. 

4. COMPARISONS WITH OTHER METHODS 

The interval estimates of distributions, up to their class 
probabilities, are exact and inherit the optimal properties 
of the Tsakok test of fit with which they were obtained. 
By comparison, the Kolmogorov single-sample statistic 
has been shown to be biased (Massey [8]). 

The results of Massey [8] also show that the 
Kolmogorov-Smirnov two-sample test is biased, since it 
cannot be unbiased for large sample sizes of one 
population. 

Theorem 4.1. If the Tsakok test of fit is used for each f 
j (j = 1,2), the test f 12 for testing H: F1 = F2 against K : F1 
≠ F2 is UMPU against some two-sided alternatives for 
which pji

 
≠ p0i for one j > 0 and one i only under K; and 

unbiased against all alternatives under K. 

Proof. If F1 ≠ F2 when comparing samples, then Fj ≠ F0 
for at least one j for any F0 (j = 1,2). Thus if pji is the 
probability of an observation falling in class i given Fj (j = 
0, 1, 2), it is possible that pji

 
≠ p0i for one j ≠ 0 and one i 

only under K. Hence the optimal properties of the Tsakok 
test of fit f j result in a test of H which is UMPU against 
some two-sided alternatives for which pji

 
≠ p0i for one j > 0 

and one i only under K; and unbiased against all 
alternatives under K. ⁭  

This compares with the Wilcoxon test [9, 10] or other 
similar tests based on ordered samples, such as those by 
Gehan [11], Mantel [12] and Cox [13], which have been 
shown to be biased against the two-sided alternative 
(Lehmann [14]). The pre-test by Martinez and Narano 
[15] does not address this problem of biasedness. 

In the chi-squared statistic involving all the k classes, 
one of the classes k is determined by the other k - 1 
classes, and so is redundant in that sense. Apart from 
being approximate and biased (Kendall and Stuart [2, p. 
453]), chi-squared tests on contingency tables are 
conditional upon the marginal totals, unlike the method 
used here. So the method proposed here gives results that 
are more generally applicable. 

To achieve tests not based on conditional distributions, 
Suissa and Shuster [16] chose psup = supπ Є [0,1] p(π), where 
π is the common proportion of 2 independent binomial 
distributions, whose proportions are being compared. This 
suffers from the difficulty that the π thus chosen may not 
be that of the distributions under study. 

A similar criticism applies to the approach used by 
Storer and Kim [17], since the maximum likelihood 
estimate of π may not be that of the binomial distributions 
concerned when comparing their proportions, and is 
therefore irrelevant. 
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Berger and Boos [18], in comparing binomial 
proportions with distributions which are not conditional, 
maximised the p value by a choice of π over a confidence 
set. It thus suffers from the same criticism that the π 
chosen may not be that of the binomial populations of 
interest, and so is irrelevant. 

Berger and Boos [18] also refer to their computational 
difficulties. The above numerical example illustrates no 
computational problems with the method used here. 

When comparing samples, Bithell and Stone [19] 
proposed a Maximum Likelihood Ratio (MLR) statistic 
for comparing populations. The problem with their 
method is that the null distribution of their MLR statistic 
is unknown for small samples. 

The Linear Risk Scores (LRS) statistic of Bithell et al. 
[20] for comparing populations is hard to interpret, apart 
from having an unknown distribution; as they noted. 
Consequently Bithell et al. [20] only made qualitative 
comparisons using LRS and MLR statistics. 

By comparison, the method proposed here is exact, 
and gives clear results; using incidence rates of the 
populations concerned. 

As the principle used for comparing distributions is 
similar to that used by Tsakok [7] for solving the Behrens-
Fisher problem, other publications on it are relevant. In 
particular, Matuszewski and Sotres [21] proposed a test 
for a variation of the Behrens-Fisher problem: They tested 
H : μ1 = μ2 of two independent normal populations with 
means μ1 and μ2 against K : μ1 < μ2. Let (aj, bj) be the 80% 
confidence interval for μj (j= 1,2). 

The test then rejects H at the nominal .05 significance 
level if and only if b1 <a2, assuming unknown variances. 

This test differs from Tsakok [7] in two respects: 
Unlike Tsakok [7], it does not test H against the two sided 
alternative that the means are unequal, which is the 
standard formulation of the Behrens-Fisher problem found 
in most texts, such as Kendall and Stuart [2]. 

Secondly, it rejects H if and only if the confidence 
intervals do not overlap, with b1 < a2. This differs from the 
Tsakok [7] test for the Behrens- Fisher problem, which 
rejects H if (but not only if) the confidence intervals for 
the means do not overlap. 

Therefore the characteristics of the two tests differ. 
Matuszewski and Sotres [21] do not claim that their test is 
exact, and only applies to the .05 nominal significance 
level. By comparison, the Tsakok [7] test is exact and 
optimal, at any significance level in (0, 1) in the 
frequentist sense. 

The two-sample problem amounts to a problem of 
deciding whether two groups of data, as specified above, 
should be classified into the same or different groups. For 
this problem, Kline [22] made restricted comparisons with 
numerical examples between the nonparametric Bayesian 

Data Reduction Algorithm (BDRA), the Linear 
Discriminant Analysis and the Quadratic Analysis. He 
admits that BDRA lacks explanatory power and its 
theoretical operating characteristics are unclear. He does 
not claim that the BDRA has theoretical optimal 
properties, unlike the proposal presented here. Kayano 
and Dozono [23] use cluster analysis to the classification 
problem, under the normality assumption. They also make 
limited numerical investigations into the effectiveness of 
their approach, with no optimality claims. The normality 
assumption is here shown to be unnecessary for 
classification, and the theoretical effectiveness of the 
present proposal is established with its optimal properties. 

These clear advantages of the method proposed here 
over its competitors make further comparisons 
unnecessary. 

5. APPENDIX  

Definition 5.1. A
'
 will be said to be contained in event 

A only in the well-known sense that A
'
 consists of sample 

points of A only, excluding any sample point that may 
simultaneously belong to another event B. Thus for the 

event (A   B), A
'
 is not (A   B) if events A and B are 

unequal. 

Theorem 5.2. Let A and B be independent events, and 
A

'
 be contained in A only. Then A

'
 cannot be dependent 

on B, if P(B) > 0 and A — A
'
 is independent of B. 

Proof. If A and B are independent events, then P(A   

B) = P(A)P(B). Suppose A contains A
'
 only, but A

'
 is 

dependent on B. If A — A
'
 is empty, then A = A

'
, so that a 

contradiction is established. If it is not empty, A — A
'
 

must be independent of B by hypothesis. So P ((A — A
'
) 

  B) = P (A — A
'
)P(B). Thus P (A   B) = P ((A

'
   (A 

— A
'
))   B) = P ((A

'
   B)  ((A — A

'
 )  B)) = P(A

'
 

  B) + P((A — A
'
 )  B) = P (A

'
 |B)P(B) + P(A — 

A
'
)P(B). Since P(A   B) = P(A)P(B), then P(A   B) = 

P(A
'
   (A — A

'
))P(B) = (P(A

'
) + P(A — A

'
))P(B) = P 

(A
'
)P(B) + P(A — A

'
)P(B). So P(A

'
)=P(A

'
|B), and A

'
 is 

independent of B (Feller [24], p125); contrary to the 
supposition that A

'
 is dependent on B.        ⁭  

Using Feller’s [24, p.128] definition of mutual 
independence, a similar argument readily establishes: 

Theorem 5.3. Let A1, ...An be mutually independent 
events, for which P(Ai) > 0 (i = 1, ...n), and event A

'
i be 

contained in Ai only. Then event A'i cannot be dependent 

on   (j:j ≠ i,j=1,...n) Aj; when Ai—A
'
i is mutually independent 

with (Aj)(j:j ≠ i). 

If the Tsakok test of fit f is used, the following 
considerations should assist in its use. 

Definition 5.4. A scan of class i is the process of 
alternately determining ni = np0i — di1 and ni = np0i + di2 

given nj   j ≠ i, k, as integers di1 and di2 are each 
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increased from 0 to at most z in that order, for some 
integer z. z is chosen to satisfy the significance level of 
the non-randomised test f and the unbiasedness condition 
for class i as closely as possible. z must minimise |E(ni — 
np0i) f |H0)|. 

Definition 5.5. A multi scan of class i > 1 is a scan of 
class i where after each ordered increase of di1

 
or di2, a scan 

of classes 1 to i —1 are made in that order, with each 
ordered change in dsj during the scan of class s > 1 
similarly resulting in a scan of classes 1 to s — 1 in that 
order for any s < i, j = 1, 2. 

Algorithm 5.6. With classes i ordered from 1 to k —1, 
a scan of class i = 1 is made, followed by multi scans of 
classes 2 to k —1 in that order. Then for each value of n2 
formed during the multi scan of class i = 2, there will be a 
pair (n1, n2) with each of the values of n1 formed during 
the scan of class i = 1. Similarly, each value of n3 formed 
during the multi scan of class i = 3 will form a triple (n1, 
n2, n3) with each of the pairs (n1, n2) formed during the 
multi scan of class i = 2. Thus by induction hypotheses the 
multi scan of class i = k —1 will create a set S of k — 1- 
tuples (n1, n2, ...nk-1) with all the values of n1, n2, ...nk-1 
formed during the multi scan. The interval of values for 
each ni (i = 1, ...k - 1) thus formed are (ci1, ci2) since these 
satisfy the unbiasedness condition by construction, within 
the limits of non-randomised tests. Moreover, since f = 0 
exactly when ci1

 
<ni <ci2 (i = 1,. ..k - 1) for the non-

randomised case, α ≥ 1- ∑S P(n1,n2...nk), where the 
summation is over all the elements (n1,n2...nk) of set S, and 
P(n1,n2...nk) is the multinomial distribution. Integer z is 
maximised to satisfy the above inequality for α for the 
non-randomised test f ; and is decreased otherwise if this 
inequality is not satisfied. 
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